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We consider scheduling issues at Beyçelik, a Turkish automotive stamping company that uses presses

to give shape to metal sheets in order to produce auto parts. The problem concerns the minimization of

the total completion time of job orders (i.e., makespan) during a planning horizon. This problem may be

classified as a combined generalized flowshop and flexible flowshop problem with special characteristics. We

show that the Stamping Scheduling Problem is NP-Hard. We develop an integer programming-based method

to build realistic and usable schedules. Our results show that the proposed method is able to find higher

quality schedules (i.e., shorter makespan values) than both the company’s current process and a model from

the literature. However, the proposed method has a relatively long run time, which is not practical for the

company in situations when a (new) schedule is needed quickly (e.g., when there is a machine breakdown or

a rush order). To improve the solution time, we develop a second method that is inspired by decomposition.

We show that the second method provides higher-quality solutions - and in most cases optimal solutions

- in a shorter time. We compare the performance of all three methods with the company’s schedules. The

second method finds a solution in minutes compared to Beyçelik’s current process, which takes 28 hours.

Further, the makespan values of the second method are about 6.1% shorter than the company’s schedules.

We estimate that the company can save over e187,000 annually by using the second method. We believe

that the models and methods developed in this paper can be used in similar companies and industries.

Keywords : stamping scheduling; machine scheduling; flowshop scheduling; integer programming;

decomposition

1. Introduction

When it comes to production assignments and planning, efficient scheduling represents an

indispensable tool for automotive stamping companies, among other industries. We consider a real-

world Stamping Scheduling Problem at an automotive stamping company, Beyçelik Gestamp in

Bursa, Turkey. The company produces automotive parts such as roofs, doors, bumpers, and axles

for automotive companies such as Fiat, Ford, Renault, Volkswagen, and Maserati. These parts
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that the Stamping Scheduling Problem can be considered a combined generalized flowshop and

flexible flowshop problem in which each job is processed consecutively on a set of machines and

there are alternative machine sets for each job. Another way to think about the problem is that

after the assignment of jobs to machines, the problem becomes a generalized flowshop; i.e., we need

to consider both the assignment and sequencing problems.

Flowshop problems are studied extensively in literature both theoretically and in terms of

applications (Garey et al. 1976, Gonzalez and Sahni 1978, Lawler et al. 1993, Waldherr and

Knust 2015). Most of the flowshop problems with an objective of minimizing makespan, including

generalized flowshop (Mastrolilli and Svensson 2011) and flexible flowshop (Behnke and Geiger

2012) are NP-hard. Even some of the special cases in flowshop problems are NP-hard (see, e.g.,

Chen et al. (1998)). Unsurprisingly, we show that our Stamping Scheduling Problem is NP-Hard.

If the number of machines in the input is a variable then the Stamping Scheduling Problem is

strongly NP-hard (Theorem 1). On the other hand, if the the number of machines is a fixed number

(as in most practical scenarios, like the one we have in this paper) then the Stamping Scheduling

Problem is NP-hard in the ordinary sense (Theorem 2). This latter result does not rule out the

possibility of solving the scheduling problem using a pseudo-polynomial time algorithm.

Besides the scheduling challenge, the company must deal with ongoing and sudden difficulties,

such as demand fluctuations, machine breakdowns, and die changeovers, in response to which the

company may need to reschedule its operations. Therefore, developing a fast, feasible, and effective

schedule, especially when rescheduling is needed, becomes a crucial requirement for the company.

To the best of our knowledge, this Stamping Scheduling Problem has not been investigated,

except in Caglar Gencosman et al. (2014). As a first attempt, and to investigate the current

practices of the company they were studying, these authors built two models: 1) a mixed integer

programming model and 2) a constraint programming model (CP1). Their mixed integer program

was too slow and could not resolve the real instances of the scheduling problem in the given solution

time limit. Although CP1 was better able to generate feasible schedules, it had no optimality (gap)

information. (We provide the CP1 model in Appendix A.)

We develop an integer programming model (IP1) to improve the quality of the CP1 solutions

(i.e., to reduce the makespan values of CP1), and we provide some information on optimality

(gap). Furthermore, to speed up IP1’s solution time, we develop a new solution method, inspired

by decomposition techniques. Our method employs a slightly modified version of IP1 and a simpler

integer program IP2, which we call the IP2/IP1 method.
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Decomposition methods divide the main problem into a master problem and a set of sub-problems

and then solve them iteratively until the stopping criteria based on lower bound and upper bound

is met. We divide the Stamping Scheduling Problem into two parts: a job-machine assignment

problem (master problem) and a sequencing problem (sub-problem). The IP2/IP1 method solves

the master problem with IP2, which is developed to solve the assignment problem, and it solves

the sequencing sub-problem with the slightly modified version of IP1. IP2/IP1 has a faster solution

time with shorter makespan values compared to IP1, CP1, and the company’s schedules. IP2/IP1

solutions are optimal in most of our experiments.

We evaluate the performance of IP2/IP1 by using a randomly generated dataset and compare

it to other methods as well as with the company’s historical schedules. We use the empirical

probability distribution of real production parameters to generate a dataset and compare the

performance of IP2/IP1 with IP1 and CP1. The IP2/IP1 method finds shorter makespan (higher-

quality) solutions faster than IP1 and CP1. When we compare the performance of the proposed

method using historical production data, we find that IP2/IP1 is able to generate high-quality

feasible and real-world schedules for a week in 8.4 minutes (on average) compared to 28 hours of

manual schedule generation at Beyçelik. In addition, IP2/IP1’s makespan values are 6.1% shorter

(on average) than those of the company. Through the use of IP2/IP1, the company can increase

its weekly production by 8.7 hours (on average) and can eliminate 28 hours of weekly scheduling

efforts. Our analysis also shows that using the IP2/IP1 model can allow the company to handle

demand increases of up to 15% without increases in makespan. Furthermore, by using IP2/IP1,

we quantify the relationship between demand increase (and decrease) and makespan increase (and

decrease).

We estimate that, considering just energy and labour costs, the company can save over e187,000

annually by using the proposed IP2/IP1 method. The estimate does not include the savings of

28 hours of manual scheduling efforts. Furthermore, with this method, the company gains the

ability to quickly reschedule when needed, thereby increasing its corporate flexibility and level of

competitiveness. We believe that the models developed in this paper are sufficiently generic to be

used in similar companies and industries, and that the models can generate effective and usable

schedules with significant savings.

Our study has not yet been implemented at Beyçelik, but the company is pleased with the

results of our approach, tested them during a study period, and is considering a complete software

implementation. The R&D manager of the company, Necip Ceylan, said, “We think that the savings

estimated and the results presented in the study are quite realistic. The results are impressive.
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They have a huge potential for our company, and we would consider implementing the study [once]

. . . it is converted to a software [program].”

Our analysis and discussion are organized in our paper as follows: We review the literature

in Section 2. In Section 3, we describe the IP1 model and compare its performance with CP1’s

performance. In Section 4, we present the IP2/IP1 method and our theoretical results, and we

conduct numerical experiments to show the effectiveness of the theoretical results and performance

of IP2/IP1 compared with IP1. We further evaluate the performance of IP2/IP1 and compare

IP2/IP1 schedules with the company’s schedules and other models, and we estimate the savings in

Section 5. In Section 6, we analyze the potential growth of production capacity and the relationship

between demand and makespan by using the IP2/IP1 method. We conclude the paper in Section

7.

2. Literature Review

Many solution methods have been developed by researchers with the aim of solving real-world

scheduling challenges (Khayat et al. 2006, Barlatt et al. 2010, 2012, Relvas et al. 2013) related

to our Stamping Scheduling Problem. For instance, Barlatt et al. (2010) considered a Stamping

Scheduling Problem with jobs that have only one operation and contain identical machines. Hence,

these authors were able to consider the scheduling problem as a task-sequencing problem. They

first developed a test-and-prune algorithm, and were able to solve small size problems to provable

optimality with that method instead of using traditional integer programming. Then, Barlatt et al.

(2012) built a decision support tool (i.e., the just-in-time execution and distribution information

(JEDI) system), which took into account the whole production environment, including supply chain

and workforce allocation. Stamping Scheduling Problems have been considered by researchers, but

to the best of our knowledge, none of the problems studied in the literature contains the specific

problem characteristics that we consider in this paper; i.e., machine eligibility restrictions and the

requirement of consecutive machines for operations.

The Stamping Scheduling Problem that we address in this paper has some similarities to the two

dimensional (2D) cutting (e.g., Gilmore and Gomory (1965)), packing (e.g., Martello et al. (2003),

Lodi et al. (1999)), and display (Geismar et al. 2015) problems. Wäscher et al. (2007) developed a

classification method for cutting and packing problems with five criteria: dimensionality, assortment

of large objects, characteristics of large objects, assortment of small items, and characteristics kind

of assignment. By using this classification method, we compare our Stamping Scheduling Problem

with other similar problem types in Table 1.
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Table 1 Comparison of problem types

Problem Type Dimensionality
Assortment of Characteristics Assortment of Characteristics
large objects of large objects small items of assignment

Stamping Scheduling Problem 2
One large Variable Strongly Specific
object dimension heterogenous locations

2D Strip Packing Problem
2

One large Variable Strongly Any
(Martello et al. 2003) object dimension heterogenous locations

2D Bin Packing Problem
2

More than one All dimensions Strongly Any
(Lodi et al. 1999) large object are fixed heterogenous locations

2D Cutting Stock Problem
2

More than one All dimensions Weakly Any
(Gilmore and Gomory 1965) large object are fixed heterogenous locations

2D Display Problem
2

More than one All dimensions
Identical

Any
(Geismar et al. 2015) large object are fixed locations

We can see the differences and similarities between the Stamping Scheduling Problem and other

problem types from Table 1. In particular, the Stamping Scheduling Problem is more similar to

the 2D strip packing problem than other problem types given in Table 1. In both problems, small

rectangular items have to be assigned to one large object that has a variable dimension. This

variable dimension is called “height” in the 2D strip packing problem while it is called “makespan”

in the Stamping Scheduling Problem. However, the Stamping Scheduling Problem differs from the

2D strip packing problem and all other problems in the assignment (cut) locations of small items.

In the stamping problem, these assignments must be in specific locations since each assignment

represents a suitable machine. In all other problems, these assignments (cuts) can be in any location

as long as they are in the large object. This additional restriction distinguishes the Stamping

Scheduling Problem from other 2D cutting, packing, and display problems.

Finding optimal solutions for scheduling problems in acceptable times by mixed integer

programming has remained a challenge because of the NP-Hard nature of the problems (Tran and

Beck 2012). Edis and Ozkarahan (2012) considered a real-life, resource-constrained parallel machine

scheduling problem in an injection-molding department and developed an integer programming

(IP) model for minimizing the makespan. However, a high number of variables and constraints

prevented the model from finding an optimal solution. The researchers then considered constraint

programming and developed two solution approaches - IP/IP and IP/CP - by dividing the whole

problem into two sub-problems: a job-machine assignment problem and a sequencing problem.

The researchers concluded that the IP/IP model performed better in test problems, whereas the

IP/CP model provided fast and practical results in all test problems and reached more effective

solutions in less than one minute when the resource constraints were tight. Similarly, we divide

our problem into two problems and develop an algorithm (IP2/IP1) that combines two integer

programming models; however, our problem is different since it requires additional constraints for

machine eligibility restrictions and consecutive operations of jobs.
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To combine the strengths of different methodologies, researchers tend to develop hybrid methods

using decomposition algorithms that have similarities to generalized Benders decomposition

(Jain and Grossmann 2001, Harjunkoski and Grossmann 2002, Canto 2008). However, Benders

decomposition requires linear programming for sub-problems, whereas scheduling problems have

a combinatorial nature that requires integer programming. Hooker and Yan (1995) developed the

logic-based Benders decomposition (LBBD) method to implement decomposition to combinatorial

problems. The LBBD method has been implemented to solve many different kinds of combinatorial

problems (Cambazard et al. 2004, Hooker 2005, 2007, Fazel-Zarandi and Beck 2009, Coban and

Hooker 2010, Heinz and Beck 2012, Tran and Beck 2012, Xiaolu et al. 2014, Camargo et al. 2014).

Hooker (2007) developed an LBBD algorithm for decomposing a planning and scheduling problem.

He tested the algorithm with different objective functions, such as minimizing cost, makespan, and

total tardiness. He also compared the results with mixed integer linear programming (MILP) and

CP. Although the decomposition method could not solve larger problems to optimality, the method

outperformed MILP. Fazel-Zarandi and Beck (2009) developed an LBBD approach for solving a

location-allocation problem. They compared the LBBD with an integer program and a Tabu Search

approach. Results showed that LBBD found optimal solutions faster than did integer programming,

and it reached better feasible solutions in less time than did Tabu Search. Xiaolu et al. (2014)

developed a decomposition method by combining ant colony and dynamic programming techniques

to schedule satellites. These studies may be strengthened with the help of meta-heuristics and

exact methods (Camargo et al. 2014). The papers referenced in this paragraph show that various

decomposition approaches can be developed by using exact methods and heuristics in LBBD.

We are inspired by from the communication between models in the LBBD algorithm, and we

extend and customize this approach for our problem. We first develop a new model IP1, and we

compare it with a constraint programming model CP1. Then, we build the IP2/IP1 method by

dividing the main problem into two sub-problems: assignment and sequencing. Compared to IP1,

CP1, and the company’s method, IP2/IP1 is able to solve the scheduling problem with higher

quality (shorter makespan), and it reduces the solution time.

3. An Integer Programming Model: IP1

We develop the IP1 model to solve the company’s “Stamping Scheduling Problem” by following

the company’s practices and conventions to mimic its system as closely as possible. Our aim is to

quickly build feasible, usable, and effective real-world schedules for the company.

Since the company has only one set of die pairs for each operation, a job and its operations can

be produced at only one machine set at a time, which makes the changeover of dies significant.
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The changeover of dies takes about 30 minutes and increases the total production time. During

the changeovers, production must stop and the related machines remain idle, resulting in losses for

the company. However the company gives 30 minutes of breaktime every four hours, such as rest

breaks, lunch, or shift changes. The company uses this idle time to complete the changeovers, which

enables the company to use a four-hour production period (i.e., when a job is assigned to a related

machine, it must require at least four hours of run time). Thus, the company can complete the

changeovers in idle time and extend the actual production time. Although this practice excludes

die changeovers from production times, it may allow production to exceed demand from time to

time.

To evaluate the effectiveness of this practice, Caglar Gencosman et al. (2014) used a model to find

an optimum period length considering the trade-off between production amount and changeovers.

They concluded that the practice of using a four-hour production period was a good choice. Since

Beyçelik uses a four-hour production period and does not allow pre-emption of jobs, we follow the

same behaviour in our study and use the practice of a four-hour production period so that we can

compare the schedules from the company and our models more fairly.

We analyze the company databases to understand Beyçelik’s production levels and demand. The

company runs two separate databases for production. The first one keeps track of production plans

and includes customer demand, while the second one is created by the Manufacturing Execution

System (MES) that oversees the entire pressline. The MES collects real-time production data from

each machine, including data on scraps and rejected parts. Therefore, the amount of production

in the MES database is always greater than that in the production plan database. We take the

MES database values for demand; that is, we use real production amounts in our models. We

calculate the total duration of job i (Ji) by multiplying its processing times (in seconds) and

its demand, and we find the required number of periods (Hi). Figure 2 shows a visualization of

this computation. The horizontal axis represents 13 machines (Mmax = 13), and the vertical axis

represents the required number of periods (i.e., the total scheduling horizon). We can assign jobs

to machines in terms of their height and width. (The total number of jobs is Imax.)

The notation of the model is presented in Table 2. The number of periods in the model is given

by Kmax; that is, Kmax is the last period that a job can start; hence, it does not represent the

makespan. Choosing a suitable Kmax is important since this value directly affects the problem size

and its feasibility. Ideally, we would like to choose the smallest Kmax value that would make the

problem instance feasible and speed up the IP1 model. To determine a good value of Kmax for

any given instance of IP1, we develop an algorithm (MinKmax). The idea is to run the MinKmax

Page 8 of 41Production and Operations Management



Page 9 of 41 Production and Operations Management



Stamping Operations Scheduling

10

Table 2 Indices, parameters, sets, and variables for IP1

Indices (for sets see below):
i Index of jobs to be scheduled, i∈ I.
k Index of periods, k ∈K.
m Index of machines, m∈M .

Parameters:
Aim Aim is 1 if job i can be processed on machine m and zero otherwise.
Ji Total duration of job i.
U Period length (4 hours).
Hi Total period of job i calculated by ⌈(Ji/3600)/U⌉.
Oi The number of operations of job i.

Sets:
I The set of jobs. I={1,2,...,Imax}.
K The set of periods. K={1,2,...,Kmax}.
M The set of machines. M={1,2,...,Mmax}.

Decision Variables:

xikm

{

1, if job i starts in period k on machine m;
0,otherwise.

IP1Cmax
Makespan

Atnxtzn ≤ 1−Aimxikm ∀i, t∈ I,∀k, z ∈K,∀m,n∈M |
t 6= i, k≤ z ≤ k+Hi − 1, n≤m+Oi − 1,m≤ n+Ot − 1

(5)

IP1Cmax ≥ 0 (6)

xikm ∈ {0,1} ∀i∈ I,∀k ∈K,∀m∈M (7)

The objective is to minimize the makespan IP1Cmax (1). For each job i and for each start period k,

we find the end time on machine m with constraint (2). Constraint (3) ensures that there can be,

at most, one job assigned for each machine m and period k. Each job i must be assigned to only

one machine and to only one period, a condition that is achieved by constraint (4). Constraint (5)

guarantees that no two jobs can overlap in the schedule. We show a sample of prevented assignments

of jobs in Figure 3. We developed four different constraints for this non-overlapping condition,

evaluated their performances and chose the one given in (5). (Details are given in Appendix C).

Finally, constraints (6-7) ensure non-negativity of IP1Cmax and binary condition of xikm variables.

After building IP1, we compare its performance with CP1 of Caglar Gencosman et al. (2014)

using instances that mimic historical Beyçelik schedules. To make a comparison between IP1 and

CP1, we generate 15 different problem instances using real jobs from Beyçelik’s schedules. We

select the number of jobs as being between 50 and 70 (since the number of real schedules is between

50 and 70) in increments of five jobs (i.e., 50, 55, 60, 65, 70), and for each of these, we generate

three instances by picking the jobs randomly. We solve these instances with IP1 and CP1 in ILOG
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Table 3 Comparison of IP1 and CP1 with randomly generated instances from company schedules

MinKmax Cmax(per.) Elapsed Time(s) Gap% ADOL%

# of Jobs Problem
Kmax Elapsed

IP1 CP1 IP1 CP1 IP1 CP1-IP1
(per.) Time(s)

50
1 24 231.7 24 26 41.4 900.0 - 7.7
2 26 186.6 26 27 47.1 900.0 - 3.7
3 24 142.8 25 27 64.3 900.0 - 7.4

55
1 31 318.8 31 31 69.0 900.0 - 0.0
2 28 313.0 28 31 220.6 900.0 - 9.7
3 27 218.6 27 29 333.1 900.0 - 6.9

60
1 31 420.0 31 33 104.4 900.0 - 6.1
2 29 583.9 29 34 520.4 900.0 - 14.7
3 31 390.6 32 35 900.0 900.0 6.3 8.6

65
1 33 637.8 33 36 900.0 900.0 15.2 8.3
2 32 626.1 33 37 900.0 900.0 12.1 10.8
3 35 520.0 35 38 889.8 900.0 - 7.9

70
1 34 900.0 35 38 900.0 900.0 28.6 7.9
2 36 845.0 38 42 900.0 900.0 70.3 9.5
3 36 696.2 37 39 900.0 900.0 71.8 5.1

Avg. 512.7 900.0 13.6 7.6

reach an optimal solution in the given time (of 900 seconds) for most of the instances and still has

(large) optimality gaps in some cases.

Unsurprisingly, the Stamping Scheduling Problem, which we can solve with IP1 is NP-hard. The

problem is strongly NP-hard if the number of machines in the input is a variable (Theorem 1) and

it is NP-hard in the ordinary sense if the the number of machines is fixed (Theorem 2).

Theorem 1 Stamping Scheduling Problem is strongly NP-hard if the number of machines in the

input is a variable.

A pseudo-polynomial time algorithm for the Stamping Scheduling Problem may be possible since

Theorem 2 does not rule out that possibility.

Theorem 2 Stamping Scheduling Problem is NP-hard in the ordinary sense if the number of

machines is fixed.

We provide the proofs of the theorems in Appendix D. To find a solution method that is faster

than IP1, we divide the main problem into two integer programs and develop the IP2/IP1 method.

We evaluate the effectiveness of IP2/IP1 by comparing its performance to the performance of IP1

and CP1, and to that of the company’s schedules. We present the IP2/IP1 method in the next

section.

4. IP2/IP1 Solution Method

We have two decisions to make for the Stamping Scheduling Problem. The first decision concerns

the assignment of jobs to machines, and the second concerns the sequence of jobs on those machines.

We see this situation more clearly in the formulation of IP1 with the xikm decision variables that

determine whether or not job i starts on processing machine m in period k.
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One idea to simplify and make IP1 solution faster is to divide the Stamping Scheduling Problem

into two smaller ones: a master problem and a sub-problem. The master problem solves an

assignment problem, considering only jobs and machines, and sends the assignment to the sub-

problem. The sub-problem then determines the starting periods for each job without changing their

assigned machines. We show that this method delivers high-quality solutions in a short computation

time and that it dramatically reduces the solution time.

Usually, in the literature, sub-problems are generated for each machine to schedule jobs on those

machines. However, in our Stamping Scheduling Problem, we cannot separate the jobs because

their operations must be processed in sequential machines. Therefore, we use only one sub-problem

for the whole production environment.

For the IP2/IP1 method, we first develop a new integer program IP2 for the assignment (master)

problem and then use a slightly modified IP1 (IP1) for the sequencing problem (sub-problem).

The decision variables of IP2 are given in Table 4. (We do not redefine the notation used in IP1.)

Table 4 Decision variables for IP2

Decision Variables:

xim

{

1, if job i assigned to machine m;
0,otherwise.

IP2Cmax
Makespan(IP2).

Our formulation of IP2 is as follows:

minimize IP2Cmax (9)

subject to
∑

i∈I

∑

n∈M |n≤m≤n+Oi−1

Ainxin ∗Hi ≤ IP2Cmax ∀m∈M (10)

∑

m∈M

Aimxim = 1 ∀i∈ I (11)

IP2Cmax ≥ 0 (12)

xim ∈ {0,1} ∀i∈ I,∀m∈M (13)

The objective function of the master problem IP2 is the minimization of the total processing time

of all machines, makespan(IP2). (We need to differentiate makespan values of IP2 and IP1 since

they may not be equal to each other. IP1Cmax includes processing times and may include idle time

between jobs. IP2Cmax includes only processing times and no idle time.) Constraint (10) calculates
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To find a lower bound on the value of IP1Cmax , we define the model IP1 as being the same as

IP1, except for replacing its objective with IP1Cmax
and updating constraint (2) with constraint

(15), as shown below.

∑

i∈I

∑

k∈K

∑

n∈M |n≤m≤n+Oi−1

Ainxikn ∗Hi ≤ IP1Cmax
∀m∈M (15)

We summarize the models IP1, IP1, IP1, and IP2 in Table 5.

Table 5 IP1, IP1, IP1, and IP2 Models

IP1: IP2:
minimize IP1Cmax minimize IP2Cmax

subject to subject to
Aimxikm(Hi + k− 1)≤ IP1Cmax ∀i∈ I,∀k ∈K,∀m∈M

∑

i∈I

∑

n∈M |n≤m≤n+Oi−1AinxinHi ≤ IP2Cmax ∀m∈M

∑

i∈I
Aimxikm ≤ 1 ∀k ∈K,∀m∈M

∑

k∈K

∑

m∈M
Aimxikm = 1 ∀i∈ I

∑

m∈M
Aimxim = 1 ∀i∈ I

Atnxtzn ≤ 1−Aimxikm ∀i, t∈ I,∀k, z ∈K,∀m,n∈M |
t 6= i, k≤ z ≤ k+Hi − 1, n≤m+Oi − 1,m≤ n+Ot − 1

IP1Cmax ≥ 0 IP2Cmax ≥ 0

xikm ∈ {0,1} ∀i∈ I,∀k ∈K,∀m∈M xim ∈ {0,1} ∀i∈ I,∀m∈M

IP1: IP1:
minimize IP1Cmax

minimize IP1Cmax

subject to subject to
∑

i∈I

∑

k∈K

∑

n∈M |n≤m≤n+Oi−1AinxiknHi ≤ IP1Cmax
∀m∈M Aimxikm(Hi + k− 1)≤ IP1Cmax ∀i∈ I,∀k ∈K,∀m∈M

∑

i∈I
Aimxikm ≤ 1 ∀k ∈K,∀m∈M

∑

i∈I
Aimxikm ≤ 1 ∀k ∈K,∀m∈M

∑

k∈K

∑

m∈M
Aimxikm = 1 ∀i∈ I

∑

k∈K

∑

m∈M
Aimxikm = 1 ∀i∈ I

Atnxtzn ≤ 1−Aimxikm ∀i, t∈ I,∀k, z ∈K,∀m,n∈M | Atnxtzn ≤ 1−Aimxikm ∀i, t∈ I,∀k, z ∈K,∀m,n∈M |
t 6= i, k≤ z ≤ k+Hi − 1, n≤m+Oi − 1,m≤ n+Ot − 1 t 6= i, k≤ z ≤ k+Hi − 1, n≤m+Oi − 1,m≤ n+Ot − 1

∑

k∈K
Aimxikm =Aimx

∗
im ∀i∈ I,m∈M

IP1Cmax
≥ 0 IP1Cmax ≥ 0

xikm ∈ {0,1} ∀i∈ I,∀k ∈K,∀m∈M xikm ∈ {0,1} ∀i∈ I,∀k ∈K,∀m∈M

The IP1 and IP1 models have the same constraints except for the one that calculates Cmax

values. The difference between IP1 and IP1 is the addition of constraint (14). IP2 has the same

constraint for Cmax calculation with IP1, and it has only one similar constraint with IP1, which

is constraint (4) stating that each job has to be assigned to a machine.

We now find a lower bound on the value of IP1Cmax .
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Lemma 2 . IP1Cmax
≤ IP1Cmax .

Proof . Both models (IP1 and IP1) are identical except for one constraint. In IP1, constraint

(15) gives total processing time on each machine (i.e., no idle time exists between jobs in this

computation). On the other hand, constraint (2) in IP1 calculates the makespan (i.e., maximum of

job finish times on each machine), and it may include idle time. Hence, any IP1 solution is feasible

for IP1 with a lower objective value than IP1Cmax . The result follows. �

Finding this lower bound, IP1Cmax
is not easier than solving IP1 itself. Fortunately, however,

the optimum value of IP2 is a lower bound on IP1Cmax
.

Lemma 3 . IP2Cmax ≤ IP1Cmax
.

Proof .

Let x∗
im be an optimal solution of IP2. We define

xikm =

{

x∗
im if k=1;

0, otherwise.

Then xikm is optimal for the relaxation of IP1 (omitting constraints (3) and (5)) with the same

objective function value of IP2. The result follows. �

By lemmata 1, 2, and 3 above, we obtain our main result.

Proposition . IP2Cmax ≤ IP1Cmax
≤ IP1Cmax ≤ IP1Cmax.

We compare IP2Cmax , IP1Cmax , IP1Cmax
, and IP1Cmax (IP2/IP1) values in Table 6. We use the

generated 15 instances from company schedules and the MinKmax algorithm for each instance to

determine Kmax. We see that although IP1 reaches feasible or optimal results with an average of

512.7 seconds, it cannot solve nearly half of the problems optimally within the time limit of 900

seconds; IP1 has 13.6% optimality gap on average. In contrast, IP2/IP1 finds optimal solutions

with an average of 114.2 seconds, which is four times faster than IP1. Furthermore, compared to

IP1, IP2/IP1 improves IP1 solutions by 1.5%, on average.

The results in the IP1 and IP1 columns show that the bounds are tight and that the IP2/IP1

method works well. (In all instances, IP2/IP1 found the optimal solution. Note that in some

instances, since IP1 cannot find an optimal solution within 900 seconds, its values can be higher

than IP1.) Hence, we conclude that IP2/IP1 provides good - and, in most instances, optimal -

solutions within the desired time set by the company.
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Table 6 Comparison of Cmax values with generated instances from company schedules

MinKmax Cmax(per.) Elapsed Time(s) Gap% ADOL%

# of Jobs Problem
Kmax Elapsed

IP1 IP2
IP2/IP1

IP1 IP2/IP1 IP1 IP1-IP2/IP1
(per.) Time(s) IP1 IP1

50
1 24 231.7 24 24 24 24 41.4 26.6 - 0.0
2 26 186.6 26 26 26 26 47.1 29.7 - 0.0
3 24 142.8 25 24 24 24 64.3 32.7 - 4.2

55
1 31 318.8 31 31 31 31 69.0 82.9 - 0.0
2 28 313.0 28 28 28 28 220.6 42.0 - 0.0
3 27 218.6 27 27 27 27 333.1 45.6 - 0.0

60
1 31 420.0 31 31 31 31 104.4 63.9 - 0.0
2 29 583.9 29 29 29 29 520.4 86.8 - 0.0
3 31 390.6 32 31 31 31 900.0 227.1 6.3 3.2

65
1 33 637.8 33 33 33 33 900.0 149.5 15.2 0.0
2 32 626.1 33 32 32 32 900.0 143.2 12.1 3.1
3 35 520.0 35 35 35 35 889.8 119.6 - 0.0

70
1 34 900.0 35 34 34 34 900.0 129.3 28.6 2.9
2 36 845.0 38 36 36 36 900.0 321.3 70.3 5.6
3 36 696.2 37 36 36 36 900.0 213.1 71.8 2.8

Avg. 512.7 114.2 13.6 1.5

We further evaluate the performance of IP2/IP1 in the next section by using a randomly

generated data set and the company’s historical schedules.

5. IP2/IP1 Performance

To further evaluate the performance of IP2/IP1 we use two different datasets: 1) a randomly

generated dataset from empirical probability distributions of parameters in the historical schedules,

and 2) the real production dataset from the company’s historical schedules. We compare IP2/IP1

with other models by using the first dataset, and we compare the company-generated (and

executed) schedules with those created by IP2/IP1, IP1, and CP1 by using the second dataset.

5.1. Comparison of Models with Randomly Generated Data

To compare the performances of IP1, CP1, and IP2/IP1 models by using a randomly generated

dataset, we first analyze the historical data to obtain the frequencies of possible parameters’ values,

as given in Table 7. Then, we randomly generate problems based on these frequencies. For each

instance, the number of jobs varies from 50-70 (considering the company schedules varies from

50-70), and each instance contains three different problems.

Table 7 Empirical distribution of model parameters

Processing Times
Probability

# of
Probability

Order
Probability

# of Alternative
Probability

of Operations Operations Amount Machines
4 0.021 1 0.431 1000 0.158 1 0.615
9 0.106 2 0.078 2000 0.263 2 0.308
10 0.043 3 0.078 3000 0.263 3 0.077
12 0.149 4 0.353 4000 0.316
14 0.064 5 0.059
15 0.149
18 0.234
19 0.021
20 0.213
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We compare the performances of models and provide the results in Table 8. The first two columns

present the number of jobs and the instance number, followed by the results of MinKmax for each

instance (Kmax value in periods and elapsed time in seconds). The Cmax section gives the makespan

values (in periods) obtained by IP1, CP1, and IP2/IP1; the last two columns show the elapsed

time (in seconds) for models and the optimality gap percentage for IP1 and IP2/IP1. We see that

IP2/IP1 reaches the same solutions faster than the other two models within the time limit of 900

seconds. IP2/IP1 is six times faster than CP1 and approximately three times faster than IP1, on

average. The IP2/IP1 model is able to find the optimal solution of problems in 148.3 seconds (i.e.,

in less than three minutes), on average.

Table 8 Comparison of IP1, CP1, and IP2/IP1 with randomly generated data

MinKmax Cmax(per.) Elapsed Time(s) Gap%

# of Jobs Problem
Kmax Elapsed

IP1 CP1
IP2/IP1

IP1 CP1 IP2/IP1 IP1 IP2/IP1
(per.) Time(s) IP1 IP1

50
1 61 900.0 61 61 61 61 900.0 900.0 80.2 18 -
2 33 138.4 33 34 33 33 103.7 900.0 33.5 - -
3 47 109.6 47 47 47 47 90.9 900.0 65.3 - -

55
1 72 732.2 72 72 72 72 597.4 900.0 185.9 - -
2 61 900.0 61 61 61 61 900.0 900.0 193.1 3.3 -
3 40 900.0 40 40 40 40 900.0 900.0 133.7 2.5 -

60
1 55 557.8 55 55 55 55 838.7 900.0 171.9 - -
2 70 488.9 70 70 70 70 160.7 900.0 122.3 - -
3 59 423.5 59 59 59 59 168.3 900.0 81.1 - -

65
1 66 795.3 66 66 66 66 226.3 900.0 156.5 - -
2 60 900.0 46 46 46 46 900.0 900.0 181.8 41.3 -
3 48 413.5 48 48 48 48 237.6 900.0 136.1 - -

70
1 89 900.0 81 81 81 81 235.4 900.0 221.1 - -
2 76 900.0 76 76 76 76 309.5 900.0 250.9 - -
3 69 900.0 68 68 68 68 426.8 900.0 210.4 - -

Avg. 466.4 900.0 148.3 4.3 0.0

To investigate the limits of IP1 and IP2/IP1 and compare the models to each other, in

Appendix E, we conduct additional experiments with larger data set values than those in the

company’s schedules. The results show that IP2/IP1 is approximately six times faster than IP1

even with larger data sets (Table 17).

5.2. Comparison of Models with Company-Generated (and Executed) Schedules

We examine the executed schedules and production data of a prior seven week period at Beyçelik.

Using the real production dataset, we compare the company schedules with those created by the

models. As before, we use the MES database for demand data. The company faces different types

of interruptions, such as machine breakdowns, maintenance, or public holidays. We analyze the

interruptions and consider them fully in our comparison. To eliminate any biases towards models,

we implement the following:
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1. Identify start times and durations of each interruption and find the machine(s) on which the

interruption occurs.

2. Run the model without any interruptions to determine the schedule.

3. If the schedule includes any interruptions, add each interruption as a dummy job to the model.

The dummy job has one operation and one alternative machine, and its total production time is

equal to the total stoppage (interruption) time.

If an interruption happens at machine m′ in period k′, we add dummy job i′ to the master

problem IP2 of IP2/IP1 with constraint (16), and we add the dummy job i′ to other models (sub-

problem IP1 of IP2/IP1, IP1, and CP1) with constraint (17). Similarly, we include constraint (17)

to MinKmax algorithm when needed.

xi′m′ = 1 (16)

xi′k′m′ = 1 (17)

Due to rest breaks and changeovers, the pressline is active for 22.5 hours of a 24-hour period,

and, as previously discussed, the company performs changeovers during shift changes or rest

breaks. Beyçelik computes its total production horizon by considering the active production time

without changeovers or public holidays. In addition, the company plans and implements scheduled

interruptions, such as administrative interruptions, training sessions, or meetings. The scheduled

interruptions reduce the active production time for an average of five hours per week. To consider

this factor, we shorten the weekly active production time by five hours. In keeping with the

company’s practice, we allow changeovers to happen between periods in the models. In conclusion,

the objective function of the IP2/IP1, IP1, CP1, and company schedules represents the active

production time only. We present the comparison of company- and model-based schedules in

Table 9.

Table 9 Comparison of company- and model-based schedules.

MinKmax Cmax(hr) Elapsed Time(s) Cmax Diff.(hr) ADOL%

Week # of Jobs
Kmax Elapsed

Company IP1 CP1 IP2/IP1 IP1 CP1 IP2/IP1
Comp- Comp-

(per.) Time(s) IP2/IP1 IP2/IP1
1 63 31 343.1 145 124 132 124 76.8 900.0 140.8 21 16.9
2 65 31 369.6 137.5 124 144 124 83.4 900.0 117.6 13.5 10.9
3 60 31 320.4 137.5 124 136 124 773.2 900.0 47.7 13.5 10.9
4 69 34 545.2 145 136 160 136 562.1 900.0 95.7 9.0 6.6
5 60 32 338.4 137.5 128 136 128 209.4 900.0 67.6 9.5 7.4
6 59 33 287.4 137.5 132 140 132 656.7 900.0 74.0 5.5 4.2
7 59 30 406.9 145 124 128 120 900.0 900.0 60.1 25 20.8

Avg. 373.0 Avg. 465.9 900.0 86.2 13.9 11.1

Table 9 shows that the IP2/IP1 method finds solutions with the same or smaller makespan

values. IP2/IP1 is also faster than other models and generates schedules in 86.2 seconds, on average.
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company’s practice, we perform an additional comparison by rescheduling the production horizon

when an interruption occurs. We present this analysis in the next section.

5.3. Rescheduling the Company Schedules

We use the same seven instances of weekly schedules as in the previous section. We first run

IP2/IP1 without any interruptions and generate a weekly schedule. When an interruption occurs,

we freeze the production and reschedule the weekly production, including the interruption and

the remaining jobs. Therefore, we have to run IP2/IP1 more than once during each week due to

interruptions. For instance, in week 2, we have to reschedule five times (six, if we consider the first

scheduling run).

We reschedule the production week by fixing the previous assignments with the addition of

constraint (16) to the master problem IP2 and constraint (17) to the sub-problem IP1 of IP2/IP1

for all finished jobs. If the interruption causes pre-emption of a job, we define a dummy job with

the same properties for the remaining processing activities, and we add this new dummy job to

the model for rescheduling. When necessary, to prevent job assignments to past periods, we fix the

number of jobs processed in past periods. If the allowable number of jobs is defined as L between

periods k1 and k2, we add constraint (18) to sub-problem IP1.

∑

i∈I

∑

k∈K|k1≤k≤k2

∑

m∈M

Aimxikm =L (18)

We determine Kmax as 40 for a week (22.5 active work hours of 7 days divided by 4 hours)

for the rescheduling experiments in order to avoid solving MinKmax over and over again for the

same week. We present the rescheduling results in Table 10. The first column contains the week

information; the second column shows the number of jobs, which increases in every run because it

includes the interruptions and/or preempted jobs as dummy jobs. The third column indicates the

IP2/IP1 solution, including IP1 and IP1 results in periods. We convert the IP1 results to hours

in the fourth column to compare them with the company results. The fifth column demonstrates

the elapsed time of schedules developed by the company and by the IP2/IP1 model. The elapsed

time for the company is calculated by observing the scheduling process in a week.

The company schedules are prepared by a planning engineer who spends eight hours on the

first day of a given week to develop the first schedule and then spends four hours on each of the

successive five days to maintain production in terms of rescheduling the current schedule for any

interruptions. In short, the engineer spends 28 hours per week, on average, for scheduling activities,

which is presented as 100,800 seconds in the ‘Company’ column.
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The sixth column shows the difference in Cmax between company schedules and IP2/IP1

solutions in hours. The last column gives the improvement of weekly schedules by using IP2/IP1

instead of company schedules. The company spends 28 hours on planning its schedules (100,800

seconds), whereas IP2/IP1 spends 504.4 seconds (8.4 minutes) on average, which represents a

significant improvement and savings. IP2/IP1 finds shorter schedules, which corresponds to a 6.1%

improvement and 8.7 hours of savings per week, on average. As in the previous section, we estimate

annual savings as e431.86 x 8.7 hours x 50 weeks = e187,859 per year, only considering pressline

energy and labour cost savings.

Table 10 Rescheduling with IP2/IP1

Cmax(per.) Cmax(hr) Elapsed Time(s) Difference(hr) ADOL%

Week # of Jobs
IP2/IP1

Company IP2/IP1 Company IP2/IP1 IP2/IP1-Comp. IP2/IP1-Comp.
IP1 IP1

1
61 29 29 145.0 116.0 - 95.0 - -
63 30 30 145.0 120.0 - 123.3 - -
65 31 31 145.0 124.0 - 356.8 21.0 14.5

Total 100800 575.1

2

60 30 30 137.5 120.0 - 103.9 - -
61 30 30 137.5 120.0 - 114.6 - -
63 30 31 137.5 124.0 - 186.1 - -
65 31 33 137.5 132.0 - 236.2 - -
66 31 32 137.5 128.0 - 265.2 - -
67 31 34 137.5 136.0 - 341.5 1.5 1.1

Total 100800 1247.5

3

57 30 30 137.5 120.0 - 90.0 - -
58 31 32 137.5 128.0 - 96.0 - -
59 31 33 137.5 132.0 - 209.2 - -
60 32 34 137.5 136.0 - 322.7 1.5 1.1

Total 100800 717.9

4
68 33 33 145.0 130.4 - 169.4 - -
69 34 34 145.0 136.0 - 134.9 9.0 6.2

Total 100800 304.3

5
59 31 31 137.5 124.0 - 100.9 - -
60 32 34 137.5 136.0 - 154.4 1.5 1.1

Total 100800 255.3
6 59 33 33 137.5 132.0 - 84.1 5.5 4.0

Total 100800 84.1

7
57 29 29 145.0 116.0 - 86.5 - -
59 31 31 145.0 124.0 - 102.9 - -
60 31 31 145.0 124.0 - 157.1 21.0 14.5

Total 100800 346.5
Avg. 504.4 8.7 6.1

In summary, IP2/IP1 is able to generate fast, usable, high-quality real-world schedules, which

means that Beyçelik can observe gains in many aspects with the use of IP2/IP1. First, it can

reduce the cost of its pressline and can expect to save e187,859 per year. Second, Beyçelik can

increase the capacity of its pressline and produce more products within the same time period

limit. Third, it can save time and money by decreasing the weekly rescheduling time spent by its

engineer from 28 hours to just minutes. Furthermore, in addition to these monetary benefits, there

are non-monetary benefits such as increased customer satisfaction, ability to respond to market
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changes and additional demand requests, improved scheduling capability, and ability to adapt to

breakdowns and interruptions. We believe that our estimate is conservative and that the total

savings could be much greater than e187,000.

6. Managerial Insights

In this section, we explore how much more production can be done with the same amount of

(executed) production time if IP2/IP1 schedules are used. This analysis, in a sense, determines the

potential production-capacity increase that becomes possible with IP2/IP1. We also analyze the

relationship between demand and makespan.

6.1. Increased Demand Analysis

Our results show that, compared to the company-generated schedules, IP2/IP1 can create shorter

schedules within minutes for the same amount of production. To investigate the potential growth

of the pressline capacity using IP2/IP1, we repeat the same runs with increasing levels of demand.

We consider the company’s historical schedules and increase the current demand by 5%, 10%,

and 15% (e.g., 5% increment in demand is realized by multiplying 1.05 to the total duration of

each job i, Ji). We present the IP2/IP1 model solutions for different demands in sequence as D 5%,

D 10%, and D 15% in Table 11.

Table 11 Increased demand analysis

Cmax(hr)
Week # of Jobs Company IP2/IP1 IP2/IP1 IP2/IP1 IP2/IP1

D 5% D 10% D 15%
1 63 145 124 128 132 136
2 65 137.5 124 128 128 140
3 60 137.5 124 132 136 136
4 69 145 136 136 144 152
5 60 137.5 128 136 140 148
6 59 137.5 132 140 140 148
7 59 145 120 128 136 140

Avg. 140.7 126.9 132.6 136.6 142.9

From Table 11, we see that the company spends 140.7 hours per week (on average) to produce its

demand. Also, we realize that even if the demand is increased by 10%, IP2/IP1 schedules can handle

the increased demand (on average) with a smaller makespan (136.6 hours). There are, however, a

few instances where the IP2/IP1 makespan for increased demand exceeds the company’s current

makespan values. For example, when demand increases by 5%, the company’s scheduled makespan

for week 6 is shorter than that of IP2/IP1. Similarly, for a 10% increase in demand, there are two

instances (out of seven) with higher IP2/IP1 makespan values. Overall, when demand increases

up to 15%, IP2/IP1 schedules are shorter than the company’s in 14 of 21 instances. Another way

Page 23 of 41 Production and Operations Management



Stamping Operations Scheduling

24

to think about these numbers is that, when using IP2/IP1, 78% (11/14) of the time, Beyçelik

can increase its production (capacity) by 10%; and 66% (14/21) of the time, it can increase its

production (capacity) by 15%. These capacity increases are significant and can translate into large

financial savings, increased flexibility, and higher levels of competitiveness.

6.2. Relationship between demand and makespan

It is important to know the relationship between demand and makespan for planning purposes.

With this information, the company can predict the change in makespan due to a potential change

in demand and plan accordingly. Furthermore, the company can estimate how much capacity can

be increased without exceeding the limit of makespan in a week, i.e., it can estimate the highest

production capacity of the company. Therefore, we investigate whether there is a relationship

between demand and makespan by changing the real-world demands in certain rates. We change

the demands of seven weeks gradually up and down by 5%-25% and create 10 different instances

(scenarios) for each of seven weeks. In order to observe the change in Cmax, we solve these problems

with the IP2/IP1 model and present the solutions with different demands as D 5%, D 10%, D 15%,

D 20%, and D 25% for increase and decrease, in Tables 12 and 13, respectively.

Table 12 IP2/IP1 solutions of problems with increased demand

Cmax(hr)
Week # of Jobs IP2/IP1 IP2/IP1 IP2/IP1 IP2/IP1 IP2/IP1 IP2/IP1

D 5% D 10% D 15% D 20% D 25%
1 63 124 128 132 136 144 148
2 65 124 128 128 140 140 148
3 60 124 132 136 136 144 148
4 69 136 136 144 152 156 160
5 60 128 136 140 148 152 156
6 59 132 140 140 148 152 156
7 59 120 128 136 136 140 144

Avg. 126.9 132.6 136.6 142.3 144 148

Table 13 IP2/IP1 solutions of problems with decreased demand

Cmax(hr)
Week # of Jobs IP2/IP1 IP2/IP1 IP2/IP1 IP2/IP1 IP2/IP1 IP2/IP1

D 5% D 10% D 15% D 20% D 25%
1 63 124 120 116 116 108 100
2 65 124 116 112 108 104 96
3 60 124 120 112 108 104 96
4 69 136 128 120 120 116 108
5 60 128 120 116 116 108 108
6 59 132 124 120 116 112 104
7 59 120 116 112 108 104 100

Avg. 126.9 120.6 115.4 113.1 108.0 101.7

To find a relationship between the change in the overall demand and the change in the makespan,

we calculate the percentage change of Cmax by comparing the new results with the IP2/IP1 solutions
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the company’s, which means that by using the second method, the company can decrease the

production cost of its pressline by 6.1%.

Our additional demand analysis shows that, compared to its existing schedules, the company

can process up to 15% more demand with the use of the second method. This increase uses only

different scheduling tools; physical changes are not required. The company is currently producing

its schedules manually, a process that takes about 28 hours per week. Our second method reduces

the scheduling time of the company’s current practice from days to minutes, which in turn decreases

labour costs. (We did not include this latter cost in our cost-saving calculation.)

This paper provides successful modelling of a real-world scheduling problem. In our model, we

are able to reduce the problem into two smaller ones and solve both of them efficiently, showing

that the second method is able to generate high-quality schedules in a short time. This result not

only provides savings to the company but also gives the company the ability to quickly reschedule

its production runs whenever a breakdown of a machine or a fluctuation in demand occurs. The

next step involves the implementation of the second method at Beyçelik. The manager of Beyçelik’s

R&D department has provided a letter of support to accompany this paper, indicating that the

company was pleased with the results of our project and that Beyçelik plans to implement our

study as a customized software program. We believe that the findings and models of this paper are

sufficiently generic to be used in other companies in this industry and in other industries similar

to it.
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Online Appendix for “Scheduling Methods for Efficient

Stamping Operations at an Automotive Company”

A The Constraint Programming Model: CP1

We present the constraint programming model CP1 for the Stamping Scheduling Problem given

in Caglar Gencosman et al. (2014) using the OPL language and the Scheduler module of constraint

programming in ILOG CPLEX 12.5. (We give the additional notation needed for CP1 only.)

Table 14 Additional sets, parameters, and variables for CP1

Index:
j Index for operations.

Sets:
Qi The set of operations for job i. Qi={1,2,...,Qimax}.
Alter {(i,m) | i∈ I,m∈M : Aim=1}.
Curr {(i, j) | i∈ I, j ∈Qi }.

Decision Variables:
yi interval variable for job i, size Ji.
eij interval variable for operation j of job i in 0..3600 ∗Kmax ∗U .
xim interval variable for alternative machines m of job i (i,m)∈Alter ; optional in 0..3600*Kmax ∗U .
gm

∑

(i,j)∈Curr
pulse(eij,1), ∀m∈M.

minimizemaxi(endOf(yi)) (19)

endBeforeStart(eij, eij+1) ∀i∈ I, j ∈Qi | j+1≤Qimax (20)

presenceOf(eij)
yields
→ presenceOf(eij+1) ∀i∈ I, j ∈Qi | j+1≤Qimax

(21)

span(yi, all(j ∈Qi)eij) ∀i∈ I (22)

alternative(yi, all(a∈Alter : a.i= i)xa) ∀i∈ I (23)

noOverlap(all(a∈Alter : a.m=m)xa) ∀m∈M (24)





presenceOf(xa)> 0
AND

presenceOf(xb)> 0





yields
→





endOf(xa)≤ startOf(xb)
OR

endOf(xb)≤ startOf(xa)





∀a, b∈Alter |Qa.imax > 1AND b.i 6= a.iAND b.m≥ a.mAND b.m≤ a.m+Qa.imax − 1 (25)

∑

m∈M

gm ≤Mmax (26)
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The objective function of CP1 is to minimize the maximum completion time, represented with the

endOf term in CP, as in expression (19). Constraint (20) ensures that the start time of operations

must be sequential, and this is achieved with the endBeforeStart term. Constraint (21) connects the

operations of a job together with the presenceOf construct. In constraint (22), the span expression

says that a job must cover the start and end times of its operations. Constraint (23) guarantees that

each job can be assigned only to one of its alternative machines. In constraint (24), the noOverlap

term blocks the assignment of multiple jobs to one machine at the same time. Constraint (25)

makes sure that if job a is assigned to machine m, then no other jobs can be assigned until the

machine’s required number of operations have been completed. Finally, the cumulative usage of

machines is restricted by constraint (26) with the number of machines.

Caglar Gencosman et al. (2014) test a few search methods and evaluate their performances. The

authors compare these methods considering solution points, number of branches, and choice points.

Their results show that these methods do not perform any better than the default automatic search

algorithm of the software.
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B MinKmax Algorithm

We develop an algorithm (MinKmax) to find the smallest Kmax value that makes IP1 feasible

to determine the boundary of production horizon efficiently. (Note that Kmax represents the last

period that a job can start processing in our models, and, hence, it does not represent the makespan

value.) The algorithm starts with two Kmax estimates: one lower bound (lb) and one upper bound

(ub). Then, it chooses a Kmax value based on these bounds and determines the feasibility of an

instance by using an integer programming model IP Kmax. The IP Kmax model is almost identical

to IP1, except for its objective. We run IP Kmax until the first feasible solution is found repetitively,

and we update the lb and ub values of Kmax at each iteration. (Since we are interested in the first

feasible solution only, we set the objective of IP Kmax to a constant value, zero.) The IP Kmax

model is given below.

minimize 0 (27)

subject to
∑

i∈I

Aimxikm ≤ 1 ∀k ∈K,m∈M (28)

∑

k∈K

∑

m∈M

Aimxikm = 1 ∀i∈ I (29)

Aimxikm(Hi + k− 1)≤Kmax ∀i∈ I, k ∈K,m∈M (30)

Atnxtzn ≤ 1−Aimxikm ∀i, t∈ I,∀k, z ∈K,∀m,n∈M |
t 6= i, k≤ z ≤ k+Hi − 1, n≤m+Oi − 1,m≤ n+Ot − 1

(31)

xikm ∈ {0,1} ∀i∈ I, k ∈K,m∈M (32)

We use three variables in the MinKmax algorithm: the upper bound (ub), the lower bound (lb),

and the current value (cv) of Kmax. We first find the average number of operations (Oavg) and the

average number of periods (Javg) of all jobs in a given problem instance. In addition, we find the

total number of jobs (Imax) and the total number of machines (Mmax) in the problem instance.

We consider the smallest integers that are smaller than or equal to the Oavg and Javg, and we

define the default value of lb as lb = (Imax ∗ ⌊Oavg ∗ Javg⌋)/Mmax. We next consider the smallest

integers that are greater than or equal to the Oavg and Javg, and we define the default value of ub

as ub= (Imax ∗ ⌈Oavg ∗ Javg⌉)/Mmax. Thus, we define the default values of variables based on the

problem instance.

We provide the algorithm in Table 15. The algorithm starts with testing the lb and ub values. We

need to guarantee at least one solution between these boundaries; hence, we define the first While
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loop to test the current boundaries and to determine an appropriate ub value. If the algorithm

finds a solution with the current ub value, the default value of cv is set as cv = ⌈ub+ lb/2⌉, and

the algorithm continues to find the best Kmax value with the second While loop. On the other

hand, if the algorithm could not find a solution with the current ub, the ub value is increased as

ub= ⌈ub ∗ 1.25⌉, the cv is set as cv = ub, and the problem is solved again. If the algorithm finds a

solution after increasing the upper bound, the cv is updated as cv= ⌈ub+ lb/2⌉, and the first While

loop is terminated to continue with the second While loop. The algorithm continues to update the

boundaries depending on the feasibility of the outcome, and the process is repeated until the gap

between lb and ub is less than 2 (ub− lb < 2), or until the time limit of 900 seconds is reached.

Table 15 The MinKmax Algorithm

lb= (Imax ∗ ⌊Oavg ∗ Javg⌋)/Mmax

ub= (Imax ∗ ⌈Oavg ∗ Javg⌉)/Mmax

While (Inf=1) {
Solve IP Kmax

If the solution is feasible Then {
cv= ⌈ub+ lb/2⌉
Inf=0 }

else{
ub= ⌈ub ∗ 1.25⌉
cv= ub }

If(Elapsed Time>900) Then {
Stop = 1
Inf = 0}

}
While (Stop=0) {
Solve IP Kmax

If the solution is feasible Then {
If(ub− lb < 2) Then {Stop = 1}
ub= cv
cv= ⌈(ub+ lb)/2⌉ }

else{
lb= cv
cv= ⌈(lb+ub)/2⌉ }

If(Elapsed Time>900) Then {Stop = 1}
If(ub− lb < 2) Then {Stop = 1}
}

End
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C Alternative Versions of Constraint (5)

We developed alternative versions of Constraint (5). (Recall that this constraint prevents

overlapping of two different jobs.)

We first give a definition for a condition used in all versions and then give the different constraints.

C0: Job t is different from job i, and job t starts before job i finishes.

• Alternative 1 (A1):

—C1: Job t cannot be scheduled if it starts at the same machine with job i,

—C2: Job t cannot be scheduled if it finishes before job i finishes,

—C3: Job t cannot be scheduled if it starts before job i starts.

Atnxtzn ≤ 1−Aimxikm ∀i, t∈ I,∀k, z ∈K,∀m,n∈M |
C0 AND (C1 ORC2 ORC3) where
C0 : t 6= i AND k≤ z ≤ k+Hi − 1,
C1 :m= n,
C2 :m≤ n+Ot − 1≤m+Oi − 1,
C3 : n≤m+Oi − 1<n+Ot − 1.

(33)

• Alternative 2 (A2):

Atnxtzn ≤ 1−Aimxikm ∀i, t∈ I,∀k, z ∈K,∀m,n∈M |
(C0 ANDC1)OR(C0 ANDC2)OR(C0 ANDC3) where
C0 : t 6= i AND k≤ z ≤ k+Hi − 1,
C1 :m= n,
C2 :m≤ n+Ot − 1≤m+Oi − 1,
C3 : n≤m+Oi − 1<n+Ot − 1.

(34)

• Alternative 3 (A3):

—D1: Job t cannot finish during processing of job i,

—D2: Job t cannot start during processing of job i,

—D3: Job t cannot start before job i starts and it cannot finish after the completion time of

job i.

Atnxtzn ≤ 1−Aimxikm ∀i, t∈ I,∀k, z ∈K,∀m,n∈M |
(C0 ANDD1)OR(C0 ANDD2)OR(C0 ANDD3) where
C0 : t 6= i AND k≤ z ≤ k+Hi − 1,
D1 :m≤ n+Ot − 1≤m+Oi − 1,
D2 :m≤ n≤m+Oi − 1,
D3 : n<mANDm+Oi − 1<n+Ot − 1.

(35)

• Alternative 4 (A4):

—E1: Job t cannot be scheduled if it starts before job i finishes,

—E2: Job t cannot be scheduled if it finishes after job i starts.
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Atnxtzn ≤ 1−Aimxikm ∀i, t∈ I,∀k, z ∈K,∀m,n∈M |
(C0 ANDE1 ANDE2)
C0 : t 6= i AND k≤ z ≤ k+Hi − 1,
E1 : n≤m+Oi − 1,
E2 :m≤ n+Ot − 1.

(36)

We ran IP1 with the four alternative versions of Constraint (5) with the same dataset. The

results are given in Table 16. Results show that A4 is slighlty faster, and hence, we chose A4 for

our models.

Table 16 Comparison of elapsed times with four alternative versions of constraint (5)

#of Jobs Problem
Kmax Cmax(per.) Elapsed Time(s)
(per.) A1 A2 A3 A4 A1 A2 A3 A4

50
1 24 24 24 24 24 49.9 48.7 48.3 41.4

2 26 26 26 26 26 56.4 56.0 54.1 47.1

3 24 24 24 24 24 72.0 72.0 71.8 64.3

55
1 31 31 31 31 31 86.7 86.3 83.9 69.0

2 28 28 28 28 28 230.2 231.5 229.3 220.6

3 27 27 27 27 27 344.6 345.7 341.5 333.1

60
1 31 31 31 31 31 121.1 122.1 121.8 104.4

2 29 29 29 29 29 538.6 537.0 537.8 520.4

3 31 32 32 32 32 900.0 900.0 900.0 900.0

65
1 33 33 33 33 33 900.0 900.0 900.0 900.0
2 32 33 33 33 33 900.0 900.0 900.0 900.0
3 35 35 35 35 35 895.2 890.7 870.5 889.8

70
1 34 35 35 35 35 900.0 900.0 900.0 900.0
2 37 38 38 38 38 900.0 900.0 900.0 900.0
3 36 39 39 39 39 900.0 900.0 900.0 900.0

Avg. 519.6 519.3 517.3 512.7
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D The Proof of NP-hardness

For completeness, we restate the Theorems before giving their proofs.

Theorem 1 Stamping Scheduling Problem is strongly NP-hard if the number of machines in the

input is a variable.

Proof: We choose the 3-Partition problem (Garey and Johnson (1979)) for our reduction.

3-Partition Instance: Given positive integers s, B and a set of integers A = {a1, a2, ...a3s} with
∑3s

i=1 ai = sB and B/4<ai <B/2 for 1≤ i≤ 3s, does there exist a partition of A into three element

sets {A1,A2, ...,As} such that
∑

aj∈Ai
aj =B,1≤ i≤ s?

3-Partition Solution: A partition of A into three element sets {A1,A2, ...,As} such that
∑

aj∈Ai
aj =B for 1≤ i≤ s.

Given an arbitrary instance of 3-Partition, we construct the following instance of the Stamping

Scheduling Problem.

• The number of machines is Mmax = 2s− 1.

• The number of jobs is Imax = 4s.

• The notation Ji(m,o, p) indicates a job i (1≤ i≤ 4s) which starts on machine m, requiring o

consecutive operations for processing time of p.

• We define three job types.

—Job α, a single job, with Jα(1,2s− 1,B).

—Job βj, s− 1 jobs (1≤ j ≤ s− 1), with Jβj (2j,1,B).

—Job γj, 3s jobs (1 ≤ j ≤ 3s), with Jγj (x,1, aj) where x ∈ {1,3,5, ...,2s − 1}; i.e., job γj

requires one operation with processing duration of aj and can be processed on any machine with

an odd index.

• The makespan, T .

For the instance of the Stamping Scheduling Problem constructed above, we consider the

following decision problem:

Decision Problem: Does there exist a feasible schedule σ with the makespan T (σ)≤ 2B?

Let σ be a schedule of 4s jobs, where σ = (σ1, σ2, ..., σ4s), and the first component of σ denotes

start time of job Jα(1,2s− 1,B); the next s− 1 entries in σ denotes start time of jobs Jβj (2j,1,B)

(j = 1,2, ..., s−1); the last 3s entry in σ denotes start time of jobs Jγj (x,1, aj) (x∈ {1,3,5, ...,2s−1}

and j = 1,2, ...,3s).

If part: Suppose there exists a partition of A into three element sets {A1,A2, ...,As}

such that
∑

aj∈Ai
aj = B,1 ≤ i ≤ s. Assume that A1 = {a1, a2, a3},A2 = {a4, a5, a6}, ...,Aj =

{a3j−2, a3j−1, a3j}, ...,As = {a3s−2, a3s−1, a3s}. Note that a3k−2 + a3k−1 + a3k =B for k= 1,2, ..., s.

We generate schedule σ as follows:
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• The notation Jj(m,o, p) indicates a job j (1≤ j ≤ s+7) which starts on machine m, requiring

o consecutive operations for processing time of p. We define the jobs as below.

• Seven jobs: J1(1,1,3B), J2(1,3,B), J3(5,1,3B), J4(3,3,B), J5(2,1,2B), J6(2,3,B), and

J7(3,1,B).

• Job ai, s jobs (1≤ j ≤ s), with Jai(4,1, ai).

• The makespan, T .

For the instance of the Stamping Scheduling Problem constructed above, we consider the

following decision problem:

Decision Problem: Does there exist a feasible schedule σ with the makespan T (σ)≤ 4B?

Let σ be a schedule of s+7 jobs, where σ = (σ1, σ2, ..., σs+7), and the first 7 entry in σ denotes

the start time of jobs J1, J2, ..., J7, the next s entry in σ denotes start time of jobs Jai(4,1, ai),

(i= 1,2, ..., s).

If part: Suppose there exists a partition of A into two subsets A1, and A2 such that A1

⋂

A2 = ∅

and
∑

aj∈A1
aj =

∑

ak∈A2
ak =B where A1 = {a1, a2, ..., ar}, A2 = {ar+1, ar+2, ..., as} (Thus, |A1|= r

and |A2|= s− r). We propose schedule σ as follows:

• Jobs J1, J4, and J5 are scheduled to start at zero; i.e., σ1 = σ4 = σ5 = 0.

• Jobs J3 and J7 are scheduled to start at B; i.e., σ3 = σ7 =B.

• Job J6 is scheduled to start at 2B; i.e., σ6 = 2B.

• Job J2 is scheduled to start at 3B; i.e., σ2 = 3B.

• For Ja-type jobs we implement the following: schedule the jobs in A1, that is jobs a1, a2, ..., ar,

at times (B,B+ a1,B+ a1 + a2, ...,B+ a1 + a2 + ...+ ar−1). Next, schedule the jobs in A2, that is

jobs ar+1, ar+2, ..., as, at times (3B,3B+ ar+1,3B+ ar+1 + ar+2, ...,3B+ ar+1 + ar+2 + ...+ as−1).

In above schedule σ, it is easy to verify that T (σ) = 4B (see Figure 9).

Only if part: Suppose there exists a schedule σ to the decision problem with T (σ)≤ 4B. We need

to prove that there exists a solution to the 2-Partition problem. To prove this, we follow the steps

below:

• Assume that T (σ)≤ 4B, then jobs J1, J2, ..., J7 must be scheduled in σ as either one of two

cases in Figure 10. Thus, T (σ) must be equal to 4B.

• The two possible schedules in Figure 10 create two slots on machine 4 each having B time

length.

• Since T (σ) = 4B and the sum of the processing time for all Ja-type jobs is 2B, the two time

slots must be filled without any idle time on machine 4 (any idle time on either of the two time

slots on machine 4 would result in T (σ)> 4B).
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E Additional Computational Experiments

To investigate the limits of IP1 and IP2/IP1 models, we perform additional experiments with

larger problem instances. We generate new instances with the number of jobs varying from 75 to

150 by using the frequencies of parameters’ values in Table 7. We limit the MinKmax algorithm with

900 seconds, and we terminate the IP1 and IP2/IP1 models after 20 hours. When the MinKmax

algorithm could not find any solution within the time limits (i.e., for the last three problems with

150 jobs), we use the IP2Cmax value, which can be found in seconds by IP2/IP1.

We compare the performances of models in Table 17. IP1 runs for 8.4 hours for all problems,

on average, and it cannot prove the optimality of three problems within 20 hours. On the other

hand, the IP2/IP1 model is able to find the optimal solutions (IP1 and IP1 values - bounds - are

equal) of problems within 1.4 hours on average, which is approximately six times faster than IP1,

on average.

Table 17 Comparison of IP1 and IP2/IP1 with randomly generated large instances

MinKmax(per.) Cmax(per.) Elapsed Time(s) Gap%
# of Jobs Problem Kmax Elapsed Time IP1 IP2/IP1 IP1 IP2/IP1 IP1 IP2/IP1

75
1 74 900.0 74 74 72000.0 80.2 1.4 -
2 82 900.0 82 82 720.4 451.3 - -
3 62 819.5 62 62 813.9 390.1 - -

100
1 113 900.0 111 111 1041.2 879.5 - -
2 111 900.0 102 102 12110.6 4475.9 - -
3 93 900.0 87 87 72000.0 1329.2 1.2 -

125
1 110 900.0 94 94 15794.6 6731.5 - -
2 145 900.0 130 130 72000.0 4266.2 27.7 -
3 137 900.0 124 124 21858.0 8869.3 - -

150
1 - 900.0 108 108 63363.8 17725.6 - -
2 - 900.0 137 137 17480.8 9922.9 - -
3 - 900.0 133 133 12072.1 6814.7 - -

Avg. 30104.6 5161.4
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