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Abstract. The simultaneous consideration of appointment day (interday scheduling) and
time of day (intraday scheduling) in dynamic scheduling decisions is a theoretical and
practical problem that has remained open. We introduce a novel dynamic programming
framework that incorporates jointly these scheduling decisions in two timescales. Our
model is designed with the intention of bridging the two streams of literature on interday
and intraday scheduling and to leverage their latest theoretical developments in tackling
the joint problem. We establish theoretical connections between two recent studies by
proving novel theoretical results in discrete convex analysis regarding constrained multi-
modular function minimization. Grounded on our theory, we develop a practically imple-
mentable and computationally tractable scheduling paradigm with performance guarantees.
Numerical experiments demonstrate that the optimality gap is less than 1% for practical
instances of the problem.

Keywords: dynamic programming • discrete convexity • stochastic models • appointment scheduling

1. Introduction
Appointment scheduling has significant clinical, opera-
tional, and economical impact on healthcare systems.
An informed scheduling strategy that can effectively
match patient demand and service capacity dynamically
is vital for the business of medical providers, quality of
care, and patient satisfaction. By regulating patient flow
via an appointment system, healthcare providers can
mitigate arrival process variability and improve opera-
tional performance. From the perspective of patients,
appointment scheduling provides the ease of knowing
in advance when to receive service and planning their
visits accordingly.

Scheduling an appointment entails determining the
specific date and time of a patient’s visit. This decision is
made simultaneously in two different timescales: inter-
day (i.e., on which day) and intraday (i.e., at what time).
Respectively, this decision incurs delays for patients
in two timescales (Gupta andDenton 2008): indirect delay
(on the order of days, weeks) and direct delay (on the
order of minutes, hours). Indirect delay is defined as
the time gap between the appointment request and the
offered appointment. Direct delay is the physical wait-
ing experienced by patients at the medical facility before
they see their provider. Both indirect and direct delays
affect access to care and quality of care, and there is a

fine trade-off between them (Zacharias and Armony
2017). Moreover, interday and intraday scheduling
problems are related and interdependent (for example,
the output of the former becomes a dynamic input to the
latter). Our study introduces and analyzes the first analyt-
ical model to inform a healthcare provider, dynamically,
upon a patient’s request, an optimal appointment sched-
uling decision that simultaneously determines on which
day and atwhat time the patient should be served.

The study of appointment scheduling can be traced
back to the seminal work by Bailey (1952). Since then,
there have been significant developments in the opera-
tions research literature on this topic. A substantial por-
tion of this literature is developed in the context of
healthcare operations, and thus, in our discussions, the
word “patient” represents some customer seeking an
appointment-based service. Traditionally, the research
on this topic focuses on intraday scheduling, which aims
to optimize the scheduled arrival times of patients
within a workday, one important performance metric
being the direct delays experienced by patients. More
recently, a rising stream of literature has been analyzing
interday scheduling models, addressing the question of
how to dynamically assign appointment requests to
future days, taking into consideration the impact of indi-
rect delays.
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Despite the tremendous growth of the appointment
scheduling literature in the past few decades, no pre-
vious study has analytically tackled the joint interday
and intraday scheduling problem, which remains
open to the best of our knowledge and as indicated in
Gupta and Denton (2008) and Feldman et al. (2014).
This is due to the highly stochastic nature, complex
structure, and large dimensionality of the joint prob-
lem. Our research fills this critical gap in the literature
and provides the first analytical model and optimiza-
tion framework to address this problem. In addition
to being an interesting and open research question,
there are many practical applications of dynamic inter-
day and intraday scheduling, such as elective surgery
scheduling, diagnostic testing, and outpatient care as
well as in other service industries beyond healthcare
(Sauré et al. 2020).

We make contributions to modeling, methodology,
and theory of appointment scheduling. We model and
analyze the dynamic problem of making joint interday
and intraday scheduling decisions as a Markov deci-
sion process (MDP). Patients are given an appoint-
ment for a specific date (interday scheduling) and
time (intraday scheduling) for their service at the time
of their requests. Our model captures important fea-
tures in the complex reality of appointment schedul-
ing, such as stochastic demand for medical services,
stochastic consultation times, no-shows, and walk-ins.

The rest of this article is structured as follows. First,
we position our contribution within the appointment
scheduling literature. Next, we introduce a novel dy-
namic programming framework that incorporates joint
scheduling decisions in two timescales. This model is
designed with the intention of bridging the two seem-
ingly independent streams of literature of interday and
intraday scheduling and leveraging their latest theoreti-
cal developments in tackling the joint problem. Sub-
sequently, we present and characterize theoretically two
distinct scheduling paradigms, andwe demonstrate how
they relate to the optimal dynamic policy. The first para-
digm is amethodically crafted heuristic solution. The sec-
ond paradigm is based on an idealistic solution with
intuitive interpretation. Both scheduling paradigms re-
duce the joint problem to tractable single-variable MDPs
with fully characterized and easy-to-compute optimal
controls. They bound the optimal value function from
above and below, leading to theoretically guaranteed
and computationally tractable performance evaluation of
our heuristic. Finally, we present computational imple-
mentations of ourmethods and discuss our conclusions.

2. Related Literature
Our study draws upon a broad body of studies related
to appointment scheduling developed over decades.
We organize this literature into four streams: intraday

scheduling, interday and/or allocation scheduling,
strategic design of appointment systems (e.g., sizing
of patient panel and choice of daily capacity level) via
queueing systems in the steady state, and inpatient
flow management. We also provide a brief review of
the related literature on discrete convexity. We only
draw attention to the recent developments in each
stream, and we discuss how we build upon the collec-
tive knowledge of the field. Interested readers may
refer to in-depth literature reviews, such as Cayirli
and Veral (2003), Gupta and Denton (2008), Ahmadi-
Javid et al. (2017), and Dai and Shi (2020).

2.1. Intraday Scheduling
The intraday scheduling literature seeks to optimize
a single day’s operations by analyzing the detailed
intraday dynamics of the system. More specifically, this
literature develops and analyzes mathematical pro-
gramming models to determine the scheduled arrival
times of patients by optimally balancing the trade-off
betweenwaiting times and capacity utilization. Patients
may be scheduled to arrive at any time during the
continuous time spectrum of a workday or assigned to
specific discrete time slots. Different sources of un-
certainties in the system are considered in thesemodels:
stochastic service times, no-shows, and nonpunctuality
as well as potential arrivals of walk-in patients. Some
recent studies are Hassin and Mendel (2008), Robinson
and Chen (2010), Zeng et al. (2010), Begen and Queyr-
anne (2011), LaGanga and Lawrence (2012), Begen et al.
(2012), Kong et al. (2013), Chen and Robinson (2014),
Zacharias and Pinedo (2014, 2017), Kuiper et al. (2015),
Qi (2017), Jiang et al. (2017), Wang et al. (2020), and
Zacharias and Yunes (2020). A common theme in this
literature is to develop an optimal static schedule for a
single day, assuming that the set of patients to be sched-
uled is known in advance and/or can be selected opti-
mally by the scheduler. In contrast, our study explicitly
considers the interday dynamics of the system, and the
number of patients scheduled in a day is dynamically
determined based on the state of the appointment book
and in anticipation of stochastic future demand.

2.2. Interday and Allocation Scheduling
More recently, a growing stream of literature considers
interday dynamics in appointment scheduling prob-
lems. Interday scheduling is concerned with an online
decision regarding how to schedule patients to future
days upon their appointment requests. Therefore, dy-
namic programming is the primarymodeling tool. Inter-
day scheduling is also referred to as advance scheduling in
the literature. Patrick et al. (2008) consider dynamic
scheduling of surgical patients with different priorities
and targets on delays. Liu et al. (2010) study how to
dynamically schedule patients with delay-dependent
no-show and cancellation probabilities. Feldman et al.
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(2014) and Liu et al. (2019) extend the work by Liu et al.
(2010) and incorporate patient choice behavior inmaking
scheduling decisions. Deo et al. (2013) study how to
schedule patients over periods, taking into account their
disease progression. As we discuss in more detail in
Section 2.6, Truong (2015) derives a characterization of
an optimal policy for the dynamic interday problem
and an algorithm to compute such a policy exactly and
efficiently by considering stochastic daily demand for
appointments and stochastic capacity utilization. Carew
et al. (2020) examine the sequential capacity planning
problem in which a hospital allocates operating room
time to different surgical specialties. Keyvanshokooh
et al. (2020) consider an online resource allocation prob-
lem inwhich aheterogeneous streamof arrivals that vary
in service times and rewards make service requests from
multiple providers.Wang et al. (2018, 2019) andDiamant
et al. (2018) further study how to dynamically schedule
patients in a network structure in which patients may
need to visit multiple stations.

In addition to advance scheduling, the literature on
allocation scheduling is related and noteworthy. In allo-
cation scheduling, all requests for appointments join
the same wait-list, and a scheduler sequentially decides
how many patients to serve tomorrow, whereas the
rest of the patients remain on the wait-list for future
service. In other words, the scheduler does not assign
any appointments in advance upon request, but only
calls the patients the day before their offered ap-
pointments. Allocation scheduling is used to manage
surgical wait-lists in countries with publicly funded
healthcare systems (e.g., Canada and the United King-
dom); see Gerchak et al. (1996) and Huh et al. (2013) for
analyses of suchmodels.

Whereas the studies of advance scheduling and alloca-
tion scheduling consider indirect delay costs in making
scheduling decisions, they often assume a newsvendor-
type model for the daily operational costs and do not
consider the intraday details. These models cannot di-
rectly inform patients, upon request, their appointed
date and time of service jointly.

2.3. Queueing Models
There is also literature, usually leveraging queueing
models in the steady state to address system-level
design questions for appointment scheduling; see, for
example, Green and Savin (2008), Liu (2016), and
Zacharias and Armony (2017). These studies provide
methods and insights to determine the size of the
patient base (called panel size in the context of primary
care), the level of daily capacity, and the choice of
appointment window (i.e., the maximum time allowed
for patients to make advance appointments). These
queueing studies address the question of how to design
and plan an appointment scheduling system at a strate-
gic level, whereas the dynamic intraday and interday

scheduling problem we address in this paper is con-
cerned with how to tactically manage an appointment
scheduling system.

2.4. Inpatient Flow Management
In the context of hospital inpatient flow management,
some studies consider joint interday and intraday
operations; see Dai and Shi (2020) for a recent review
on this literature. However, the hospital setting leads
to a significantly different problem, often with simpler
interday or intraday details involved. For instance,
Helm and Van Oyen (2014) develop a static optimiza-
tion model to determine the optimal cyclic schedules
for elective hospital admissions, taking into account
their impact on the use of hospital beds. One key
assumption is that patients are scheduled according to
the fixed cyclic schedule and then “passively” flow
through the system, whereas in our model the daily
schedule is managed dynamically. Sauré et al. (2020)
jointly solve advance and intraday scheduling prob-
lems in surgical care. However, they only consider idle
time and overtime of the surgeon during the day and
do not consider patient wait time (hence, all patients
are scheduled at the beginning of the day). This
approach may be appropriate for filling up an operat-
ing room block schedule (Santibáñez et al. 2007), but
it falls short to fully capture intraday details when
patient waiting is included in the equation.

2.5. Multimodularity and Discrete Convexity
Multimodularity of the intraday cost function is a key
assumption of our model, backed theoretically by the
recent literature andwith intuitive interpretation.Mul-
timodularity is a discrete convexity property, formally
and rigorously defined first by Hajek (1985) within the
context of optimal admission control to queues. Multi-
modularity and other notions of discrete convexity are
studied and incorporated progressively in various
areas/applications of discrete optimization and opera-
tions research. Interested readers are referred to Li and
Yu (2014), Moriguchi and Murota (2019), and Chen
and Li (2021a, b) for expositions of the mathematical
definitions, theoretical properties, and practical impli-
cations of such functions.

Multimodularity is shown to guarantee global opti-
mality of integer solutions that are optimal within
some discrete local neighborhood of exponential size.
Murota (2005) provides an algorithm for minimizing
an unconstrained multimodular function over Z

n in
polynomial time via unconstrained submodular set-
function minimization. Zacharias and Yunes (2020)
demonstrate how tominimize an unconstrainedmulti-
modular function over Zn

+ in polynomial time via sub-
modular set-function minimization over ring families
of sets.
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The objective function in static intraday scheduling
is proven to be multimodular in various studies in the
literature under different models and assumptions
(Zeng et al. 2010, Zacharias and Pinedo 2017, Wang
et al. 2020, Zacharias and Yunes 2020). More pertinent
to our study, Zacharias and Yunes (2020) prove that
the intraday cost function is multimodular under gen-
eral stochastic service times, no-shows, walk-ins, and
heterogeneous waiting cost coefficients.

2.6. Positioning and Contribution
We build upon the results of two recent studies: one
from interday scheduling (Truong 2015) and one from
intraday scheduling (Zacharias and Yunes 2020). We
prove theoretical connections between them to develop
an analytically and computationally tractable optimiza-
tion framework for the joint problem.

Truong (2015) characterizes an optimal policy for the
dynamic interday problem and derives an algorithm to
compute such a policy exactly and efficiently. The char-
acterization and solution procedure in Truong (2015)
relies on the property of successive refinability, which ele-
gantly reduces the interday problem (multidimensional
dynamic programming) to sequential allocation sched-
uling (one-dimensional dynamic programming). The
intraday cost function in Truong (2015) is assumed to
be a convex function of one variable (the total number
of patients in the schedule) and does not explicitly con-
sider the detailed intraday dynamics.

Zacharias and Yunes (2020) model and analyze the
static intraday problem as an integer nonlinear mathe-
matical program, in which the objective function
(intraday cost) depends on a detailed schedule for a
workday and is the outcome of stochastic analysis in
the transient state. They prove that the problem pos-
sesses discrete convexity properties and develop an
algorithm that identifies an optimal intraday schedule
efficiently.

We extend the dynamic model of Truong (2015) to
account for joint interday and intraday decisions so that
the intraday cost function depends on a detailed sched-
ule for a workday (i.e., a vector), and no-shows can be
incorporated. We provide a characterization of the opti-
mal value function by treating the number of patients in
a daily schedule as the connecting link between Truong
(2015) and Zacharias and Yunes (2020). In particular,
we treat the total number of patients in a daily schedule
as a parameter (the right-hand side of an equality con-
straint) in a mathematical program that involves con-
strainedmultimodular functionminimization.

We prove that, under two distinct intraday schedul-
ing paradigms, the constrained static intraday problem
can be solved in polynomial time. Moreover, the corre-
sponding minimal intraday cost functions are convex
in the total number of patients (a scalar that appears in
the right-hand side of an equality constraint). To the

best of our knowledge, these theoretical results in dis-
crete convex analysis are novel on their own, inde-
pendent of our model and underlying problem. They
relate to the theory of discrete optimization and its
applications within and beyond the field of appoint-
ment scheduling. They are essential in our develop-
ment of theoretical lower and upper bounds for the
joint interday and intraday problem. Based on these
bounds, we develop a computationally efficient heu-
ristic solution with a theoretically guaranteed optimal-
ity gap. Extensive numerical experiments indicate that
the optimality gap is less than 1% for practical instan-
ces of the problem and reveal additional managerial
implications.

3. Dynamic Programming Framework
We first introduce a comprehensive dynamic model
that accounts for joint scheduling decisions in two dif-
ferent timescales (interday and intraday). Subsequently,
we reproduce relevant results from the literature on
dynamic allocation and interday scheduling, adjusted
accordingly to our modeling framework and assump-
tions. These reproduced results serve as stepping-
stones to advancing our understanding of the problem
and building our theory.

3.1. Interday and Intraday Scheduling Model
We model the dynamic interday and intraday sched-
uling problem as an MDP. We consider a horizon of T
days, where T is allowed to be infinity, indexed by
t ∈ {1, 2, : : : ,T}. Future outcomes are discounted by a
factor γ ∈ (0, 1). Each workday is partitioned into n
time slots of equal duration, for example, slots of 30,
20, or 10 minutes, depending on how refined we want
the intraday schedules to be. The state of the appoint-
ment system at the beginning of day t, before new
demand is realized, is a collection of vectors (daily
schedules):

slot 1 slot 2 : : : slot n

Xt �

xt1

xt2

⋮

xtτ

⋮

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

day 1

day 2

⋮

day τ

⋮

x1t1 x2t1 : : : xnt1

x1t2 x2t2 : : : xnt2

⋮ ⋮ ⋱ ⋮

x1tτ x2tτ : : : xntτ

⋮ ⋮ ⋮

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ X ,

where X denotes the set of all admissible appointment
books, xtτ � (x1tτ,x2tτ, : : : ,xntτ) ∈ Z

n
+ is the schedule for

day τ in the rolling horizon from day t, and xitτ � # of
patients scheduled to arrive at slot i in τ days from day
t. We use | · | to denote the L1-norm. Thus, the size of
the appointment book is |Xt | �∑

τ
∑

ixitτ, and the size of
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the schedule for a single day is |xtτ| �∑
ixitτ. Our model

assumes that the sequence of events during period t
occurs in the following order:

Step 1. The state of the MDP Xt at the beginning of
day t is observed.

Step 2. Stochastic demand dt ~ d during day t is real-
ized and observed.We assume that {dt}Tt�1 is a sequence
of independent and identically distributed (i.i.d.) ran-
dom variables with support on some subset ofZ+.

Step 3. A decision of how to assign new requests to
slots in the horizon is made. The booking decision on
day t is

slot 1 slot 2 : : : slot n

Bt �

bt1

bt2

⋮

btτ

⋮

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

day 1

day 2

⋮

day τ

⋮

b1t1 b2t1 : : : bnt1

b1t2 b2t2 : : : bnt2

⋮ ⋮ ⋱ ⋮

b1tτ b2tτ : : : bntτ

⋮ ⋮ ⋮

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ B(Xt, dt),

where btτ � (b1tτ,b2tτ, : : : ,bntτ) ∈ Z
n
+ is the vector of new

patients booked in the schedule for day τ in the sched-
uling horizon, bitτ � # of new patients booked to arrive
at slot i in τ days from day t, and B(Xt,dt) � {Bt : Bt ≥
0, |Bt | � dt,Xt +Bt ∈ X}. The outcome of the decision is
an updated schedule:

slot 1 slot 2 : : : slot n

Zt �Xt+Bt �

zt1

zt2

⋮

ztτ

⋮

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

day 1

day 2

⋮

day τ

⋮

z1t1 z2t1 : : : znt1

z1t2 z2t2 : : : znt2

⋮ ⋮ ⋱ ⋮

z1tτ z2tτ : : : zntτ

⋮ ⋮ ⋮

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈Z(Xt,dt),

where Z(Xt,dt) � {Zt ∈ X : Zt ≥ Xt, |Zt | � |Xt | + dt}. The
first row of Zt (i.e., the vector zt1) is the schedule for day
t+ 1.

Step 4. The system incurs the one-period cost C(Zt) �
inter(Zt) +intra(zt1), according to the updated sched-
ule. Consistent with Truong (2015), a daily appointment
delay cost ca is incurred for every patient registered in
the appointment book; therefore, inter(Zt) � ca |Zt |.
The intraday cost function intra(·) is assumed to be a
nonnegative multimodular function defined on Z

n
+. For

completeness and for the readers interested in imple-
menting our scheduling algorithms, in Appendix B, we
provide a mathematical definition of multimodularity
and present a general class of such functions that capture
direct delay, overtime, and idle time costs.

Step 5. The state of the appointment system is up-
dated as Xt+1 � ζ(Zt), where the operator ζ(Zt) removes
the first row from Zt. That is, the state of the system
“rolls” one day forward.

A scheduling policy is a sequence of controls μ �
{μ1,μ2, : : : ,μT}, where μt : X × Z+ → X and μt(Xt,dt) ∈
Z(Xt,dt) for all t � 1, 2, : : : ,T. The total discounted cost
incurred from period t and beyond under policy μ,
given the then-current schedule Xt and demand dt, is
defined as

Vμ
t (Xt,dt) � E

∑T
τ�t

γτ−tC(μτ(Xτ,dτ))
∣∣∣∣∣Xt,dt

[ ]
,

and the optimal cost function

Vt(Xt,dt) �min
μ

Vμ
t (Xt,dt)

satisfies the optimality equation

Vt(Xt,dt) � min
Zt∈Z(Xt,dt)

{C(Zt) + γE[Vt+1(ζ(Zt),dt+1)]},
t � 1, 2, : : : ,T: (1)

In the finite horizon case, we assume that VT+1(·, ·) � 0
without loss of generality. The infinite horizon problem
is well defined because the cost per period C(·) is non-
negative, and therefore, the conditions of proposition
4.1.1 in Bertsekas (2000) are satisfied.

We note that our dynamic programming model and
subsequent methods can incorporate patient no-show
behavior and walk-ins only through the choice of a
suitable intra(·) function (for example, the one pre-
sented in Appendix B incorporates no-shows, walk-
ins, and general stochastic service times).

3.2. Allocation Scheduling Model
In this section, we consider a simplified version of
the problem in which all requests for an appointment
join the same wait-list. In this simplified model, a
scheduler sequentially decides how many patients to
serve in the next period and, consequently, how many
patients to keep on the wait-list for future service. In
other words, the scheduler does not assign appoint-
ments (neither a date nor a time slot) in advance upon
request and only notifies the patients the day before
their service dates. As we discuss in Section 2, this
scheduling model is referred to in the literature as an
allocation scheduling model and is used to model the
management of surgical wait-lists in publicly funded
healthcare systems. Even though the allocation sched-
uling model cannot be applied in the context of general
appointment scheduling, it serves as a stepping-stone
to solve themore intricate interday and intraday sched-
uling problem.

In an allocation schedulingmodel, the state of the sys-
tem at the beginning of period t, before new demand is
realized, is the size of the wait-list xt. This model reduces
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the state of the system from a matrix to a scalar, and
thus, it is analytically and computationally more tract-
able. The sequence of events and dynamic programming
formulation are analogous:

Step 1. At the beginning of day t, the size of the wait-
list xt is observed.

Step 2. Stochastic demand dt ~ d during day t is real-
ized and observed, and the size of the wait-list becomes
zt � xt + dt. We assume that {dt}Tt�1 is a sequence of i.i.d.
random variables with support on some subset of Z+.

Step 3. A decision is made to book bt patients from
the wait-list to arrive in period t + 1. The remaining
zt − bt patients stay on the wait-list.

Step 4. The system incurs the one-period cost C̄(bt,zt)
� inter(zt) +intra(bt), where inter(zt) � cazt, and
intra(·) is assumed to be a convex function of one
variable. We note that, in Truong (2015), the intraday
cost function is assumed to be convex and increasing.
In our model, it takes a more general format. It has
a minimizer a ≥ 0 and it is decreasing on [0, a] and
increasing on [a,∞).

Step 5. The state of the system is updated as xt+1 �
zt − bt.

After observing the wait-list zt, the maximal optimal
control (booking) policy on day t is denoted by π̄t(zt),
and V̄t(zt) denotes the optimal discounted cost incurred
from period t and beyond and satisfies the optimality
equation

V̄t(zt) � min
bt∈[0,zt]

{C̄(bt,zt) + γE[V̄t+1(zt − bt + dt+1)]},
t � 1, 2, : : : ,T: (2)

In the finite horizon case, V̄T+1(·) � 0. For the infinite
horizon problem, the conditions of proposition 4.1.5
in Bertsekas (2000) are satisfied, and therefore, there
exists a maximal optimal stationary policy π̄ that does
not depend on the time index t.

Lemma 1. (i) V̄t(·) is convex for all t. (ii) π̄t(·) is increas-
ing, and π̄t(zt + 1) ≤ π̄t(zt) + 1 for all t.

The value function is convex in the size of the
wait-list. As a result, given also the problem’s separa-
ble costs and lattice action space, the cost function to
be minimized in period t is submodular in the
action-state pair (bt, zt). Consequently, the optimal
allocation scheduling policy is increasing in the size
of the wait-list, and when the wait-list increases by
one patient, the optimal control increases by at most
one patient. The latter property is leveraged to speed
up the solution procedure for the dynamic program
(2). We note that similar structural properties are ob-
tained in Gerchak et al. (1996), Huh et al. (2013), and
Truong (2015). We present the proofs of Lemma 1
and subsequent theoretical results in Appendix A.

3.3. Interday Scheduling Model
As demonstrated in Truong (2015), the interday sched-
uling problem can be reduced to an iterative sequence
of allocation scheduling problems. In interday schedul-
ing, patients are being assigned an appointment for
some day in the future but not a particular time slot.
The state of the system on day t is a vector xt � (xt1,
xt2, : : : ), where xtτ is the total number of patients sched-
uled to arrive in τ days from t. We note that the state
of the system xt in thismodel containsmore information
comparedwith its counterpart in the allocation schedul-
ing model (2), but not as many details as the one in
the interday/intraday scheduling model (1). The model
assumes that the sequence of events during period t
occurs in the following order:

Step 1. The state of the system xt at the beginning of
day t is observed.

Step 2. Stochastic demand dt ~ d during day t is real-
ized and observed.We assume that {dt}Tt�1 is a sequence
of i.i.d. random variables with support on some subset
ofZ+.

Step 3. A decision of how to assign new requests
to future days is made. The booking decision on day t
is denoted by bt � (bt1,bt2, ::::) with |bt | � dt. The out-
come of the decision is an updated schedule zt �
(zt1,zt2, ::::) � xt +bt with |zt | � |xt | + dt.

Step 4. The system incurs the one-period cost
C̃(zt) � inter(|zt |) + intra(zt1), where inter(·) and
intra(·) are as described in Section 3.2.

Step 5. The state of the appointment system is updated
as xt+1 � η(zt) by removing the first element of zt.

Given the then-current schedule xt and demand dt,
Ṽt(xt,dt) denotes the total discounted cost incurred
from t and beyond and satisfies the optimality equa-
tion

Ṽt(xt,dt) � min
zt:zt≥xt, |zt|�|xt|+dt

{C̃(zt) + γE[Ṽt+1(η(zt),dt+1)]},
t � 1, 2, : : : ,T: (3)

The next result follows from theorems 5 and 6 in
Truong (2015).

Theorem 1 (Truong 2015). Assume that x1 � 0 and that
the horizon is infinite. There exists an optimal schedule
zπ̄t (xt,dt) � (zπ̄t1(xt,dt),zπ̄t2(xt,dt), : : : ) for the interday sched-
uling problem in (3) for every period t satisfying

zπ̄tτ(xt,dt) �
π̄(|xt | + dt) for τ � 1

π̄ |xt | + dt −
∑τ−1
k�1

zπ̄tk xt,dt( )
( )

for τ � 2, 3, : : : ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

where π̄(·) is the a maximal optimal stationary policy for
the allocation scheduling model (2). Moreover, zπ̄t1(xt,dt) ≥
zπ̄t2(xt,dt) ≥ : : : .
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According to Theorem 1, we can construct an optimal
solution to the interday scheduling problem based on
the tractable optimal control of allocation scheduling.
First, we apply the allocation function π̄ to the total
number of outstanding patients |xt | + dt to obtain the
number of patients to serve tomorrow. Then, we apply
the allocation function π̄ to the remaining number of
outstanding patients to obtain the number of patients to
be allocated to the day after tomorrow and so on and so
forth until all patients are allocated to some day in the
future. The optimality of this policy is based on the ele-
gant successive refinability property proved in Truong
(2015). If we relax the constraint in (3) that prior sched-
uling commitments are binding (i.e., remove the con-
straint zt ≥ xt), we obtain a solution that is a refinement
of the existing schedule and, therefore, feasible for the
constrained problem. In other words, any changes in
the updated schedule can be made with new requests
according to the allocation scheduling function, and
therefore, the constraint zt ≥ xt is redundant.

4. A Theory-Based Practical Heuristic
The dynamic program (1) is analytically and computa-
tionally intractable when relying directly on existing
tools from the literature. In this section, we consider a
constrained version of the problem, resulting in a reduc-
tion to an efficiently solvable dynamic program with a
theoretical support.

The intraday cost function in allocation scheduling
in Section 3.2 is a general convex function of one varia-
ble (the total number of patients in the schedule) as
opposed to a detailed schedule for a workday. In order
to establish a connection between the dimensionality
reduction results in Section 3.3 and the joint interday
and intraday problem addressed in Section 3.1, we first
need to define a meaningful relationship between
intra(·) and intra(·). To that end, we introduce a
theory-based and practical scheduling paradigm: se-
quentially refinable intraday scheduling (SRIS).

SRIS has three critical characteristics. First, to the best
of our knowledge, it is the first analytical approach that
can provide patients with a date (interday timescale)
and a time (intraday timescale) simultaneously when
they book appointments. It is computationally tractable
and fully implementable in practice. Second, it is feasible
to our original problem (1), and therefore, it yields a the-
oretical upper bound for the value function of the inter-
day and intraday scheduling problem. Third, SRIS is
shown numerically to be nearly optimal for practical
instances of the problem. In the subsequent section, we
develop a theoretical lower bound to (1), based onwhich
we bound from above the optimality gap of SRIS.

Definition 1. We say that a sequence of vectors (yb)b∈Z+
is sequentially refinable iff |yb | � b for all b ∈ Z+ and
0 � y0 ≤ y1 ≤ y2: : : .

Let s � (s1, s2, ::::, sn) ∈ arg min{intra(x) : x ∈ Z
n
+} be

an optimal solution to the static intraday problem.
Based on the assumption that intra(·) is multimodu-
lar, s can be computed efficiently based on theorem 7
in Zacharias and Yunes (2020). In an idealistic appoint-
ment system in which demand for appointments can
be perfectly regulated so that a deterministic stream of
exactly b̄ � |s| �∑n

i�1 si appointment requests arrive at
the scheduler on a daily basis, then each daily schedule
is equal to s, and thus, no patient experiences indirect
delays, and the system consistently incurs the minimal
intraday cost. In reality (because of variability in the
number of new daily requests arriving at the scheduler
and indirect delay costs and potentially other factors)
some daily schedules are anticipated to have a differ-
ent number of patients and/or structure, responding
dynamically and optimally to the stochastically evolv-
ing state of the system.

We construct a sequence of intraday schedules cen-
tered around s defined as

sb¢

s if b � b̄
arg min{intra(x) : x ∈ Z

n
+, |x| � b, x ≤ sb+1}

for b � b̄ − 1, b̄ − 2, : : : , 2, 1, 0
arg min{intra(x) : x ∈ Z

n
+, |x| � b, x ≥ sb−1}

for b � b̄ + 1, b̄ + 2, ::::

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5)

The sequence (sb)b∈Z+ is sequentially refinable because
sb+1 � sb + ei for some i ∈ {1, 2, : : : ,n} for all b ∈ Z+,
where ei ∈ Z

n
+ is the vector that has zeros everywhere

except in the i th component in which it is equal to
one. Based on (sb)b∈Z+ we can establish a link between
intra(·) and its single-variable counterpart intra(·)
and thereby leverage the results of Sections 3.2 and
3.3 to address the joint interday/intraday problem.
Consider the piecewise linear function with integer
break points defined as

intras(b)

¢

intra(sb) if b ∈ Z+
(b− �b	)intra(s�b	) + (
b� − b)intra(s�b	)

if b ∈ R+\Z+:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Lemma 2. intras(·) is convex on R+.

From Lemma 2, the results of Sections 3.2 and 3.3
hold when we set intra(·) � intras(·). Let π̄s be the
corresponding optimal stationary policy for allocation
scheduling and consider the special case of (1) defined
as

Vs
t (Xt,dt) � min

Zt∈Z(Xt,dt)
{Cs(Zt) + γE[Vs

t+1(ζ(Zt),dt+1)]},
t � 1, 2, : : : ,T, (6)
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where

Cs(Xt)
¢

C(Xt) if Xt ∈ X s¢{Xt : xtτ � s |xtτ | for all τ} ⊆ X

∞ otherwise:

{
We characterize analytically a computationally tract-
able solution to (6) in Theorem 2.

Theorem 2. Assume that X1 � 0 and that the horizon is
infinite. There exists an optimal policy Zs

t for the joint inter-
day and intraday scheduling problem in (6) for all t such
that Xt ∈ X s and

Zs
t(Xt,dt) �

szπ̄s
t1 (θ(Xt),dt)

szπ̄s
t2 (θ(Xt),dt)

⋮
szπ̄s

tτ (θ(Xt),dt)
⋮

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where θ(Xt) � (|xt1 |, |xt2 |, : : : ).
According to Theorem 2, if we restrict the set of ad-

missible appointment books X in Section 3.1 to be a col-
lection of matrices with sequentially refinable rows,
then the state of the appointment system can be reduced
from a matrix (a detailed appointment book) to the cor-
responding vector for interday scheduling. Thus, from
Theorem 1, the problem can be reduced further to
sequential allocation scheduling with tractable optimal
solution. In sum, Theorem 2 completely characterizes a
feasible policy SRIS to the joint interday and intraday
scheduling problem (1).

We note that the optimal allocation policy π̄s speci-
fies the number of patients to be served in each day,
and the sequence (sb)b∈Z+ defined in (5) prescribes, for
each day, which time slots to schedule incoming re-
quests for appointments. Because the sequence (sb)b∈Z+
is sequentially refinable, the policy SRIS can schedule
new appointment requests online without revoking the
scheduling decisions made in previous days. More im-
portantly, we note that SRIS can handle a system in
which appointment assignments are made one at a time
as soon as individual requests arrive at the scheduler as
opposed to handling jointly the total number of requests
once the daily demand is realized. In order to support
real-time decisionmaking, SRIS restricts the search space
of schedules within the class of sequentially refinable
ones. Moreover, as we demonstrate next, SRIS is strik-
ingly close to optimal despite its restricted state space.

5. A Theory-Based Idealistic Solution
with Practical Implications

In this section, we construct a lower bound for the
value function of the joint interday/intraday scheduling

problem in (1). This lower bound is based on theory and
has an intuitive interpretation.Moreover, it is instrumental
in evaluating the performance of SRIS.

We relax the requirement that appointment times,
once assigned to patient requests, cannot be changed.
Rather, we allow the scheduler to finalize the appoint-
ment times of patients on the day right before they
receive their services, whereas the assigned appointment
days are binding. This may require some “reshuffling”
of the existing and dynamically planned intraday sched-
ules, rendering this scheduling paradigm impractical,
yet idealistic. We refer to this scheduling paradigm as
reoptimized intraday scheduling (ROIS).

ROIS is founded upon the optimal static intraday
schedules constrained on the total number of patients.
Let rb ∈ arg min{intra(x) : x ∈ Z

n
+, |x| � b} be an opti-

mal intraday schedule with b scheduled patients,
b ∈ Z+. When intra(·) is multimodular, we can com-
pute rb efficiently as shown in our Theorem 3. Theo-
rem 3 builds upon discrete convexity results from
Altman et al. (2000), Murota (2004, 2005), Kaandorp
and Koole (2007), and Zacharias and Yunes (2020).

Let g : Zn
+ → R be a multimodular function and

Mb � {x ∈ Z
n
+ : |x| � b} for some b ∈ Z+. According to

Kaandorp and Koole (2007), Algorithm 1 terminates
with a minimizer of g overMb.

Algorithm 1 (Kaandorp and Koole 2007; Minimization of
a Multimodular Function g on Mb)

1: define E¢{−e1,e1 − e2,e2 − e3, : : : ,en−1 − en,en}
2: pick an x ∈Mb
3: find V∗ ∈ arg min{g x+∑

v∈Vv( ) : V ⊆ E,x+∑
v∈Vv ∈

Mb} and set x∗ � x+∑
v∈V∗

4: if g(x) ≤ g(x∗), then stop (x is a minimizer of g over
Mb)

5: set x← x∗ and go to step 3

Step 2 in Algorithm 1 involves exhaustive local search
over a discrete neighborhood of size up to 2n integer
vectors; a task with exponential complexity. However,
we prove in Theorem 3 thatwe can perform local search
in polynomial time via submodular set-function mini-
mization over ring families of sets. Let f : Zn

+ → R : x
�→ g(Qx), where

Q �

1 0 0 0 ⋯ 0 0 0
−1 1 0 0 ⋯ 0 0 0
0 −1 1 0 ⋯ 0 0 0
⋮ ⋱ ⋱ ⋮
0 0 0 0 ⋯ −1 1 0
0 0 0 0 ⋯ 0 −1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ R
n×n:

According to lemma 2.1 in Murota (2005), f is L\-convex.
The problem minx∈Mbg(x) is equivalent to miny∈Lb f (y),
where Lb � {y ∈ Z

n
+ : 0 ≤ y1 ≤ y2 ≤ : : : ≤ yn � b}. In par-

ticular, for b ∈ Z+ and x ∈Mb, step 2 in Algorithm 1 is
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equivalent to

min{ f (y+ εeY) : ε ∈ {−1, 1},Y ⊆{1, 2, : : : ,n},
y+ εeY ∈ Lb}, (Py,b),

where y �Q−1x ∈ Lb and eY � (11∈Y, 12∈Y, : : : ,1n∈Y) ∈
{0, 1}n is the characteristic vector of some Y ⊆ {1, 2,
: : : ,n}. According to Murota (2004), problem (Py,b) in-
volves constrained minimization of two submodular
set functions

min ρ+
y,b(Y)¢f (y+ eY)

s:t: Y ⊆ {1, 2, : : : ,n}
y+ eY ∈ Lb

(P+
y,b)

and

min ρ−
y,b(Y)¢f (y− eY)

s:t: Y ⊆ {1, 2, : : : ,n}
y− eY ∈ Lb:

(P−
y,b)

The best solution between (P+
y,b) and (P−

y,b) solves
(Py,b).

Theorem 3. Problems (P+
y,b) and (P

−
y,b) can be solved in pol-

ynomial time via unconstrained submodular set-function
minimization for all b ∈ Z+ and y ∈ Lb.

Theorem 3 is the constrained counterpart of theo-
rem 7 in Zacharias and Yunes (2020), in which they
address unconstrained minimization of multimodular
functions over the whole set of vectors in Z

n
+. The

number of scheduled patients in Zacharias and Yunes
(2020) is an outcome of optimization as opposed to
being the fixed parameter b in our problem (Py,b).
They prove that the problem can be solved in polyno-
mial time via constrained submodular set-function
minimization over two (properly constructed) ring
families of subsets, both families stemming from the
common ground set {1, 2, : : : ,n}.

In contrast to Zacharias and Yunes (2020), Theorem
3 addresses nonnegative multimodular function mini-
mization over Z

+
n subject to the additional constraint

that |x| � b. This problem is also equivalent to solving
two constrained submodular set-function minimiza-
tion problems. The two constraint sets differ from their
counterparts in Zacharias and Yunes (2020), account-
ing for the fixed number of patients to be scheduled.
Moreover, the two families of subsets in the corre-
sponding constrained sets are stemming from two dis-
tinct ground sets. The proof of Theorem 3 prescribes
how to construct the two appropriate ground sets that
serve as the bases to generate the two ring families of
subsets for the corresponding constrained problems

(P+
y,b) and (P−

y,b). The readers interested in performing
computational implementations of our methods are
directed to appendix B of the e-companion to Zacha-
rias and Yunes (2020), in which they can follow the
detailed mathematical and algorithmic steps, adjusted
accordingly to the proper ground sets that we pre-
scribe in our Theorem 3.

Once we identify rb, we define the corresponding
single-variable intraday cost as a piecewise linear
function with integer break points

intrar(b)

¢

intra(rb) if b ∈Z+
(b− �b	)intra(r�b	) + (
b�− b)intra(r
b�)

if b ∈R+\Z+:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
As indicated in Corollary 1, intrar(:) is convex. In
fact, we establish a more general result in Lemma 3.

Lemma 3. Let g : Zn
+ → R be a multimodular function.

The function h(b) �minx∈Mbg(x) is discretely convex in b
on Z+.

The proof of Lemma 3 involves the continuous exten-
sion of a multimodular function presented in Altman
et al. (2000, section 2.2). This extension is locally linear
on the convex hull formed by neighboring extreme-
point integer vectors. We leveraged this extension to
apply a classic result on minimizing continuous convex
functions onZ

n
+ with constrained L1-norms.

In this section, thus far, we treat the total number of
patients in a daily schedule b as a parameter (the right-
hand side of an equality constraint) in a static integer
program that involves constrainedmultimodular func-
tion minimization, minx∈Mbg(x). According to Theo-
rem 3, the constrained minimization problem can be
solved in polynomial time, and according to Lemma 3,
the minimal objective function is discretely convex in
b. Theorem 3 and Lemma 3 are stand-alone results,
independent of our model and underlying problem
yet motivated by our pursuit of addressing (1). To the
best of our knowledge, these results are novel. They
relate to the theory of discrete optimization and its
applications within and beyond the field of appoint-
ment scheduling. More pertinent to this paper, they are
instrumental in our development of a computationally
efficient lower bound to (1) as shown subsequently.
Based on these results, we establish a theoretically
guaranteed optimality gap for SRIS and evaluate its
performance.

Corollary 1. intrar(·) is convex on R+.

From Corollary 1, the results of Sections 3.2 and 3.3
hold when we set intra(·) � intrar(·). Let π̄r be the
corresponding optimal policy for allocation schedul-
ing. If we allow rearrangement of patients within each
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intraday schedule as it evolves dynamically with new
patients so that each intraday schedule is equal to rb
for some b ∈ Z+, then the problem can be reduced to
sequential allocation scheduling. More specifically,
consider the relaxation of (1) defined as

Vr
t (Xt,dt) � min

Zt∈Zr(Xt,dt)
{C(Zt) + γEdt+1[Vr

t+1(ζ(Zt),dt+1)]},
(7)

where Zr
t(Xt,dt)�{Zt ∈ X :θ(Zt) ≥ θ(Xt), |Zt | � |Xt | + dt}

⊇ Z(Xt,dt) and θ(Xt) � (|xt1 |, |xt2 |, : : : ). We note that the
difference between (1) and (7) is in the respective con-
straintsZt ≥ Xt andθ(Zt) ≥ θ(Xt). The relaxed constraint
allows the scheduler to reoptimize the existing appoint-
ment times (but not days) as the system evolves dynam-
ically, rendering the solution to (7) potentially infeasible
for (1). We characterize analytically a computationally
tractable solution to (7) in Theorem 4.

Theorem 4. Assume that X1 � 0 and that the horizon is
infinite. There exists an optimal policy Zr

t for the joint inter-
day and intraday scheduling problem in (7) for all t such
that

Zr
t(Xt,dt) �

rzπ̄r
t1 (θ(Xt),dt)

rzπ̄r
t2 (θ(Xt),dt)

⋮
rzπ̄r

tτ (θ(Xt),dt)
⋮

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where θ(Xt) � (|xt1 |, |xt2 |, : : : ).

6. Contrast of SRIS and ROIS,
Implications, and Performance
Guarantees

By construction and as illustrated in Figure 1, intras

(·) ≥ intrar(·), the two functions have the same mini-
mizer b̄, and intras(b̄) � intrar(b̄). Both functions
are convex (Lemma 2 and Corollary 1), they appear to
be almost identical away from their common mini-
mizer b̄, and they demonstrate slightly notable differ-
ences around b̄. Moreover, Figure 1 signifies that the
commonalities between the two functions are not sen-
sitive to the variance of the service time distribution
or the no-show probability.

In Figure 2, we display a sample comparison between
the corresponding sequences of intraday schedules
(sb)b∈Z+ and (rb)b∈Z+ . In this particular example, the
optimal number of patients to accommodate in both
sequences is b̄ � 18. When additional patients need to
be accommodated in a schedule because of potential
dynamic demand spikes and as prescribed by Theorems
2 and 4, the schedules become denser. In extreme

situations of cumbersome appointment backlogs, exces-
sive overbooking appears at the very last slot of an intra-
day schedule. Such extreme scenarios exist in theory as a
means to construct well-defined intraday cost functions
with unbounded domains. However, because of the con-
vexity of the intraday cost function and the dynamic
containment of the appointment backlog adhering to
Lemma 1(b), such extreme schedules are quite unlikely
to appear in practice given that the average daily
demand volume is within the same order of magnitude
as b̄. In a system inwhich thedemandvolume is an order
of magnitude larger than b̄, then inevitably, the appoint-
ment backlog grows problematically large to over-
whelming levels, and as a result, patients endure long
appointment delays and/or an overcrowdedwait room.
Healthcare providers can avoid such situations by regu-
lating their demand volume and/or adjusting their
intraday capacity (translated as increased b̄ in our
model). Green and Savin (2008), Liu (2016), and Zacha-
rias andArmony (2017) are some recent studies that pro-
vide methods and insights to inform such strategic-level
operational design.

The sequence (sb)b∈Z+ is sequentially refinable and
thereby can be used as a basis to generate a feasible
heuristic solution (SRIS as described in Theorem 2) to
the joint interday and intraday problem. Whereas the
sequence (rb)b∈Z+ does not possess this feature, we can
leverage its properties to bound from below the value
function in (1) and thereby assess the performance of
SRIS. We state and prove mathematically this implica-
tion in Proposition 1 that follows.

Proposition 1. Assume that X1 � 0. Then, Vr
t (·, ·) ≤ Vt(·, ·)

≤ Vs
t (·, ·) for all t.

As a direct consequence of Proposition 1, the heu-
ristic solution SRIS has a theoretically guaranteed and
computationally efficient upper bound on its optimal-
ity gap.

Corollary 2. Assume that X1 � 0. The percentage optimal-

ity gap of SRIS is bounded from above by Vs
t (·, ·)−Vr

t (·, ·)
Vr

t (·, ·)
× 100%:

7. Implementation and Computational
Experiments

Equipped with tractable analytical tools to tackle the
joint dynamic interday and intraday problem, in this
section, we present computational implementations of
our methods that assess their practical merit and
expose additional managerial insights.

7.1. Dynamic Programming Implementation
First, we discuss how we implemented the dynamic
scheduling paradigms SRIS and ROIS. The allocation
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scheduling problem has a countably infinite state space.
Even though an optimal stationary policy exists (see
Bertsekas 2000, section 4.1), it is not possible to determine
the optimal value functions and optimal controls via
standard dynamic programming methods (see Bertse-
kas 2000, section 2.7). We solve finite-state approxi-
mations of the problem with a wait-list up to 1,000
patients by implementing the policy-spacemethod pro-
posed in White (1979, 1982). The policy-space method

is an iterative process. In iteration n, the value func-
tion is approximated for states {0, 1, 2, ::::,n} based on
the results of iteration n–1. For more details on this
iterative methodology, the reader is referred to the
original paper as well as its more recent exposition in
Lee et al. (2017). Finally, we note that solving one
instance of the interday and intraday scheduling prob-
lem in the scale we consider in this section takes only
a few minutes. However, solving the original MDP

Figure 1. Contrast of i ¯ntras(·) and i ¯ntrar(·)with Stochastic Service Times R and Show-up Probabilities p

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Notes. intra(·) as in Appendix B. The model input for intra(·), using the notation in Appendix B, is N � 480 minutes (eight hours, 9 a.m.–5
p.m.), k � 15minutes, ci � 1, co � 1, cs � 0:1, U � 0, R ~ beta-binomial with E[R] � 30 minutes and support on {0, 1, 2, ::::, 90}.
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without resorting to our approaches and theoretical
findings is computationally intractable because of the
curse of dimensionality.

7.2. Model Input
The intraday cost function intra(·) quantifies the opera-
tional cost incurred under some intraday schedule, and
it is assumed in our analytical model to be some

nonnegative multimodular function. In our computa-
tional experiments, we incorporated the class of intra-
day cost functions introduced in Zacharias and Yunes
(2020), defined as a weighted sum of expected direct
delays experienced by patients with appointments,
expected direct delays experienced bywalk-in patients,
expected provider overtime, and expected provider
idle time. This class of intra(·) functions is the

Figure 2. Sample Comparison Between Intraday Schedules sb and rb

Notes. intra(·) as in Appendix B. The model input for intra(·), using the notation in Appendix B, is N � 480 minutes (eight hours, 9 a.m.–5
p.m.), k � 15 minutes, p � 0.8, ci � 1, co � 1, cs � 0:1, U � 0, R ~ beta-binomial with E[R] � 30 minutes,

�����������
Var[R]√

=E[R] � 0:4 and support on
{0, 1, 2, ::::, 90}.
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outcome of stochastic analysis in the transient state and
is proven to be multimodular under general stochastic
service times, no-shows, walk-ins, and heterogeneous
waiting cost coefficients. It is versatile, and it has nine
distinct inputs (random variables, parameters, cost
coefficients) that can be tailored to describe a variety of
clinical environments.

The impact, sensitivity analyses, and managerial im-
plications of static intraday scheduling models are ana-
lyzed extensively in the literature (see Wang et al. 2020,
Zacharias and Yunes 2020 for two recent studies). In our
computational experiments, we focus on the trade-off
between direct and indirect delays and the correspond-
ing interplay between interday and intraday scheduling.
Accordingly, we consider a fixed input regarding the
intraday components of the problem. In particular, con-
sultation times follow a beta-binomial distribution with
average 30 minutes, coefficient of variation 0.4, and sup-
port on {0, 1, : : : , 90} (see Zacharias and Yunes 2020 for a
discussion about the qualities and appropriateness of
this distribution). An eight-hour workday is partitioned
into 32 15-minute slots. There is a no-show rate of 20%,
and we assume no walk-in patients. Regarding the cost
coefficients, following the literature, the idle time cost
coefficient is normalized to one, overtime is equally as
costly as idle time, and the waiting cost coefficient is
equal to 0.1. In this environment, the optimal static intra-
day schedule accommodates 18 patients; see Figures 1
and 2.

In our computational study, the appointment delay
cost coefficient ca takes 49 different values ranging
from 0 up to 12 with increments of 0.25. For example,
when ca � 3, a patient experiencing a direct delay of 30
minutes is equally as costly as a patient experiencing
an indirect delay of one day. In the extreme case of ca
� 0, indirect delays are not taken under consideration
in the scheduling decisions. The case of ca � 12 corre-
sponds to the other extreme in which a patient experi-
encing a direct delay of two hours is equally as costly
as a patient experiencing an indirect delay of one day.
This range of ca is aligned well with the empirical
findings in Liu et al. (2018) that a direct delay of 45
minutes is roughly equivalent to an indirect delay of
one week from the patients’ perspective.

Daily requests for appointments follow a Poisson(λ)
distribution with λ in {5, 6, : : : , 30}, a set that contains
the total number of patients accommodated by the
optimal static intraday schedule. The Poisson distribu-
tion is empirically and theoretically justified to be a
good model for stochastic arrivals in service systems.
In the context of outpatient scheduling, we refer to
Green et al. (2007), Robinson and Chen (2010), Liu et al.
(2010), and Zacharias and Armony (2017) for justifica-
tions about the appropriateness of the Poisson distri-
bution to model daily requests for appointments. A
commonly used and intuitive argument is that a panel

of patients on the order of 1,000s with each patient
requesting daily and independently an appointment
with some small probability generates binomially dis-
tributed daily demand, which can be approximated
well by a Poisson distribution.

To recap, in our numerical experiments, we ana-
lyzed 1,274 distinct instances of the problem based on
different values of ca and λ. We focused on the impact
of the demand volume and the relative importance of
the waiting cost coefficients and the corresponding
interplay between inter/intraday scheduling. The dis-
count factor γwas set to 97.5%.

7.3. SRIS Performance Evaluation
Recall that SRIS allows us to obtain a feasible solution
to the interday and intraday scheduling problem and
that the value functions of ROIS and SRIS (respec-
tively) provide lower and upper bounds on the value
function in (1); see Proposition 1. We analyzed numeri-
cally the performances of SRIS and ROIS and thereby
the optimality gap of SRIS. The optimality gap of SRIS
is consistently less than 1% across all 1,274 instances,
suggesting that it is an effective (besides practically
implementable) heuristic solution. The two heat maps
in Figure 3 display a sample of our analysis on the opti-
mality gap. Figure 3, (a) and (b), depicts the optimality
gap as a function of the interday cost ca and arrival rate
λ, respectively. Besides the optimality gap being less
than 1%, we observe that it does not vary significantly
with the state of the system (size of the wait-list), as the
heat maps do not exhibit notable vertical variations in
color. We point out that the optimality gap is slightly
larger for values of λ around 18 (the optimal number
of patients for the static intraday problem) in agree-
ment with Figure 1.

Moreover, Figure 3 demonstrates that the idealistic
scheduling paradigm ROIS only marginally outper-
forms SRIS. One key takeaway is that, when equipped
with an informed and methodically crafted schedul-
ing template, there is negligible value in maintaining
the flexibility to reoptimize and reassign appointment
times at the last possible moment to match their opti-
mal static counterpart (besides such practice being
impractical).

It is noteworthy to point out that the heat map in
Figure 3(a) demonstrates an irregular “discontinuity of
colors” for values of ca between 0 and 0.5. One plausible
explanation is the following.When ca� 0, the systempri-
oritizes dynamically the delivery of optimal intraday
schedules, disregarding indirect delays imposed on
backlogged patients. When ca transitions from 0 to 0.25,
a remarkable paradigm shift takes place, in which the
optimal policy takes under consideration the interday
dynamics, penalizes appointment delays, and poten-
tially compromises slightly the optimal intraday input
resulting from amodel inwhich ca� 0.
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7.4. SRIS vs. ROIS
SRIS and ROIS, by construction, generate different
intraday schedules for the joint problem except at b̄,
where sb̄ � rb̄ . At a higher level, we are also interested
to see how they differ in solving the corresponding
interday problem (3). In our next experiment, we
investigate the difference between their optimal con-
trols π̄s(·) and π̄r(·). Figure 4 visualizes a sample of
our results: (a) as a function of the size of wait-list z
and the interday cost ca and (b) as a function of the
size of wait-list z and the arrival rate λ. We observe
that the two policies are identical in the majority of
the parameter/state space represented by the white

area of the heat maps. For the rest of the parameter/
state space, their absolute difference is one. The simi-
larities of the two policies can be attributed to the
commonalities between intras(·) and intrar(·), see
Figure 1, and can explain, to a certain extent, the
remarkably small optimality gap of SRIS.

7.5. Sensitivity Analysis of SRIS
In Figure 5, we visualize with two heat maps what an
SRIS optimal allocation policy looks like: (a) as a func-
tion of the size of wait-list z and the interday cost ca
and (b) as a function of the size of wait-list z and the
arrival rate λ. In both heat maps, we observe that, for

Figure 4. Difference Between Optimal Allocation Policies for SRIS and ROIS

(a) (b)

Notes. (a) λ � 18, ca varies. (b) ca � 3, λ varies.

Figure 3. Upper Bound on the Percentage Optimality Gap of SRIS

(a) (b)

Notes. (a) λ � 18, ca varies. (b) ca � 3, λ varies.
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small values of z, the optimal allocation policy offers
to all patients a next-day appointment, whereas for
larger values of the wait-list, the optimal allocation
policy increases in a concave manner (see Lemma 1).
We also observe that, besides the size of the wait-list,
both the anticipated future demand volume (captured
by λ) and the relative importance of indirect delay
(captured by ca) have an impact on the optimal policy
and should be taken under consideration. Intuiti-
vely, as either ca or λ increase, the optimal allocation
policy increases as well.

8. Conclusion
Appointment scheduling systems are commonly
used by healthcare providers to manage capacity and
handle patient demand effectively. An informed sche-
duling strategy, which responds dynamically to fluctu-
ations in patient demand, not only improves access to
care, but also reduces variability in day-to-day opera-
tions and boosts productivity. Scheduling an appoint-
ment typically entails determining dynamically the
specific date (interday scheduling) and time (intraday
scheduling) of a patient’s visit. Interday and intraday
scheduling problems are related and interdependent.
Despite the tremendous growth of the appointment
scheduling literature in the past few decades, no pre-
vious study has analytically tackled the joint interday
and intraday scheduling problem, which had re-
mained an open area of research with significant prac-
tical implications. Our paper fills this critical gap in the
literature and provides the first analytical model and
optimization platform that can be applied by health-
care professionals to manage their patient scheduling
dynamically.

We make contributions to modeling, methodology,
and theory of dynamic appointment scheduling. We
build theoretical connections between two independently
established streams of literature on appointment schedul-
ing (interday and intraday scheduling). We prove novel
theoretical results in discrete convex analysis regarding
constrained multimodular function minimization. We
leverage these results and our dynamic programming
framework to develop an informed heuristic solution
SRIS. Based on theoretical and computationally tractable
performance guarantees, SRIS is shown to be nearly
optimal. Besides establishing a rigorous and practically
implementable approach to an open problem, our analy-
sis bears important managerial implications. Notably,
we demonstrate numerically that a methodically crafted
and easy-to-implement scheduling paradigm (such as
SRIS) performs nearly as well as an idealistic solution in
which the dynamic intraday schedules can be reopti-
mized at the last moment to match their optimal static
counterpart (ROIS).

Our model is capable of handling important practi-
cal features of patient scheduling such as stochastic
demand for medical services, stochastic consultation
times, no-shows, and walk-ins. It captures the trade-
offs involved in utilizing valuable resources efficiently
and providing timely access to care. It is versatile
and can be tailored to describe a variety of medical
practice environments. Our scheduling methods and
findings relate to healthcare professionals who man-
age appointment-based services such as primary care,
dental care, pediatrics, diagnostic tests, and surgical
departments.

We conclude with future directions of interest and/or
limitations of this study. In lieu of known probability
distributions for the problem’s stochastic elements, one

Figure 5. Optimal Allocation Policy for SRIS

(a) (b)

Notes. (a) λ � 18, ca varies. (b) ca � 3, λ varies.
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can make use of observed data and develop a sampling-
based approach, such as in Begen et al. (2012). Consider-
ation of heterogeneous patients is another direction
for future research, and it bears a challenging aspect to
the problem, namely, the sequencing of patients. It is
also of interest to consider how no-shows and walk-ins
are affected by system congestion as opposed to being
homogeneous across all dynamically evolving states.
Dynamic optimization of appointment systems that
manage schedules for a pool of multiple providers is
another future direction of interest (see, e.g., Zacharias
and Pinedo 2017, Soltani et al. 2019, Kuiper and Lee 2022
for some recent studies addressing the corresponding
static intraday problem). Additional challenging aspects
of the problem, not addressed by our methods, include
patient preferences, cancellations, nonpunctuality, balk-
ing behavior, and strategic interactions between pro-
viders and patients.
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Appendix A. Proofs

Proof of Lemma 1.
(i) Proof by induction. Let T <∞. Then, V̄T+1(·) � 0 is trivi-

ally convex. The inductive hypothesis is that V̄t+1(·) is convex,
based on which we need to prove that V̄t(·) is also convex. Let
Ḡt(bt, zt) � C̄(bt, zt) + γE[V̄t+1(zt − bt + dt+1)] be the cost func-
tion to be minimized in period t. Then, V̄t(·) �minbt∈[0,zt]Ḡ(bt,
zt) is also convex because Ḡ(bt, zt) is jointly convex in (bt, zt)
and [0, zt] is a convex set; see Boyd and Vandenberghe (2004,
chapter 3). In order to see that Ḡ(bt,zt) is jointly convex in (bt,
zt) on {(b,z) : 0 ≤ b ≤ z}, first note that C̄(bt, zt) � inter(zt) +
intra(bt) is separable and both inter(·) and intra(·) are
convex. Then, let 0 ≤ b ≤ z, 0 ≤ b′ ≤ z′, λ ∈ [0, 1], and define
f (b, z) � V̄t+1(z− b).

f (λ(b, z) + (1−λ)(b′, z′)) � f (λb+ (1−λ)b′,λz+ (1−λ)z)
� V̄t+1(λ(z− b) + (1−λ)(z′ − b′))
≤ λV̄t+1(z− b) + (1−λ)V̄t+1(z′ − b′)
� λf (b, z) + (1−λ)f (b′, z′):

The infinite horizon problem has the same properties by tak-
ing the limit as T→∞. w

(ii) From the proof of theorem 3 in Truong (2015), it suffices
to show that Ḡt(·, ·) is submodular. First note that C̄(bt, zt) �
inter(zt) +intra(bt) is separable and, therefore, submodu-
lar. Moreover, V̄t+1(zt − bt + d) is submodular in (bt, zt) be-
cause V̄t+1(·) is convex. w

Proof of Lemma 2. First, we show that intras(·) is dis-
cretely convex on Z+. Let b ∈ Z+. Then, sb+1 � sb + ei and
sb+2 � sb + ei + ej for some i, j ∈ {1, 2, : : : ,n}. It suffices to

show that

intras(b+ 2) − intras(b+ 1) ≥ intras(b+ 1) − intras(b)
wintra(sb+2) − intra(sb+1) ≥ intra(sb+1) −intra(sb)
wintra(sb + ei + ej) + intra(sb) ≥ 2intra(sb + ei),

which is true because, from the directional convexity of
intra(·), see Zacharias and Yunes (2020), we get

intra(sb+ei+ej)+intra(sb)≥intra(sb+ei)+intra(sb+ej)
≥2intra(sb+ei):

Then, intras(·) is convex on R+ as it is the piecewise lin-
ear extension of a discretely convex function. w

Proof of Theorem 2. Assume that X1 � 0. First note that, if
Xt ∈ X s, then also ζ(Xt) ∈ X s. Because 0 ∈ X and X s ⊆ X , there
exists a policy such that Zt ∈ Z(Xt,dt) ∩ X s, and therefore,
Vs

t (Xt,dt) is finite for every t. On the other hand, if a policy is
such that Zt ∉ X s for some t, then Vs

t (Xt,dt) � ∞. Therefore,
there exists an optimal policy such that Xt,Zt ∈ X s for all t.
Now, let Xt ∈ X s. Row xtτ of Xt is equal to s |xtτ | , and the

problem

Vs
t (Xt,dt)
� min

Zt∈Z(Xt,dt)
{inter(Zt) + intra(zt1) + γE[Vs

t+1(ζ(Zt),dt+1)]}

is equivalent to

Ṽt(θ(Xt),dt) � min
zt :zt≥θ(Xt), |zt |�|θ(Xt)|+dt

{inter(|zt |)

+ intra(szt1 ) + γE[Ṽt+1(η(zt),dt+1)]}
� min

zt :zt≥θ(Xt), |zt |�|θ(Xt)|+dt
{inter(|zt |)

+ intras(zt1) + γE[Ṽt+1(η(zt),dt+1)]},
where θ(Xt) � (|xt1 |, |xt2 |, : : : ). The result follows from the
convexity of intras(·) in Lemma 2 and from Theorem 1. w

Proof of Theorem 3. Let κ(y) �max{i ∈ {1,2, : : : ,n} : yi < b},
N+

y � {1,2, : : : ,κ(y)}, N− � {1, 2, : : : ,n− 1}, and L � {y ∈ Z
n
+ : 0

≤ y1 ≤ y2 ≤ : : : ≤ yn}. Problem (P+
y,b) is equivalent to min{ρ+

y

(Y) : Y ⊆N+
y ,y+ eY ∈ L}, which is solvable in polynomial

time because the constraint set is a ring family of subsets
of N+

y ; see Zacharias and Yunes (2020, lemma EC.2). Prob-
lem (P−

y,b) is equivalent to min{ρ−
y (Y) : Y ⊆N−,y− eY ∈ L},

which is solvable in polynomial time because the con-
straint set is a ring family of subsets of N–; see Zacharias
and Yunes (2020, lemma EC.2). w

Proof of Lemma 3. Let g : Zn
+ → R be a multimodular

function. Consider its continuous extension g̃ on R
n
+ as

defined in Altman et al. (2000, section 2.2). Then, g̃ is con-
vex on R

n
+ and agrees with g on Z

n
+. Define h̃(b) �min{g̃

(x) : |x| � b,x ∈ R
n
+} for b ∈ R+. Then, h̃(b) is convex; see

Boyd and Vandenberghe (2004, example 3.17).
It remains to show that there exists an integer vector x∗

such that |x∗ | � b and g(x∗) � h̃(b) whenever b is in Z+.
When b�0, then trivially x∗ � 0. Let b ≥ 1 in Z+ and
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y ∈ arg min{g̃(x) : |x| � b,x ∈ R
n
+}. Consider the atom S(y) as

defined in Altman et al. (2000, section 2.2). By construc-
tion, S(y) is the convex hull of n + 1 vectors in Z

n
+, say,

the convex hull of {x0,x1, : : : ,xn}. Also, by construction,
the vectors {x0,x1, : : : ,xn} can be partitioned into two sub-
sets so that vectors in each subset have the same sum of
individual components. In particular, the sum of compo-
nents of the vectors within the two subsets is either b and
b – 1 or b and b + 1. Therefore, y must belong to the con-
vex hull of vectors of some subset of {x0,x1, : : : ,xn} with
the sum of individual components equal to b, denoted as
S̃(y) ⊆ S(y). By construction, g̃ is linear on S̃(y); therefore,
one of the extreme points of S̃(y) minimizes g̃ on S̃(y). w

Proof of Theorem 4. Assume that X1 � 0 and let Xt ∈ X .
The problem

Vr
t (Xt,dt) � min

Zt∈Zr(Xt,dt)
{inter(Zt) + intra(zt1)

+ γEdt+1 [Vr
t+1(ζ(Zt),dt+1)]}

is equivalent to

Ṽt(θ(Xt),dt) � min
zt :zt≥θ(Xt), |zt |�|θ(Xt)|+dt

{inter(|zt |)

+ intra(rzt1 ) + γEdt+1 [Ṽt+1(η(zt),dt+1)]}
� min

zt :zt≥θ(Xt), |zt |�|θ(Xt)|+dt
{inter(|zt |)

+ intrar(zt1) + γEdt+1 [Ṽt+1(η(zt),dt+1)]}:
The result follows from the convexity of intrar(·) in Cor-
ollary 1 and from Theorem 1. w

Proof of Proposition 1. Because C(·) ≤ Cs(·) and Z(·, ·) ⊆
Zr

t(·, ·), it follows that Vr
t (·, ·) ≤ Vt(·, ·) ≤ Vs

t (·, ·). w

Appendix B. An Intraday Scheduling Model
The intraday cost function intra(·) quantifies the opera-
tional cost incurred given a daily appointment schedule,
and it is assumed in this paper to be a general multimod-
ular function defined over nonnegative integer vectors.

Definition B.1. A function g : Zn
+ → R is said to be multi-

modular if

g(x+ v) − g(x) ≥ g(x+ v+w) − g(x+w)
for all x ∈ Z

n
+ and all v≠w ∈ E such that x+ v,x+w ∈ Z

n
+,

where

E � {−e1,e1 − e2,e2 − e3, : : : ,en−1 − en,en}:
As a companion to our computational experiments and for
the reader interested in implementing our dynamic schedul-
ing paradigms based on a class of explicitly defined multi-
modular intraday cost functions, in this appendix, we
recapitulate the stochastic model introduced in Zacharias
and Yunes (2020) and its transient analysis.

• Timescale: Time is measured in minutes, and the length
of a regular workday is N minutes during which the sched-
uled appointments are allocated. The provider may continue
to operate in overtime as well, beyondN, until all patients are
served. Time is continuous, and a workday is partitioned into
n discrete time slots of equal duration k �N=n. We assume
that k is a positive integer such that n is also some positive

integer. Assuming that the first slot starts at time zero,
then time slot t occupies the time interval [(t− 1)k, tk), t � 1,
2, : : : ,n.

• Arrival process: There are two arrival streams: one
driven by scheduled appointments (dynamic decisions in our
model) and one from unscheduled walk-ins (exogenous sto-
chastic events). An appointment schedule is denoted by a
vector x � (x1, : : : ,xn) ∈ Z

n
+, where xt is the number of patients

assigned to slot t, that is, scheduled to arrive at time (t− 1)k.
Each scheduled patient independently shows up with proba-
bility p ∈ (0, 1]. The random vector Sx � (Sx1,Sx2, : : : ,Sxn) ∈ Z

n
+

denotes the arrival process from scheduled appointments
under x, where Sxt ~ Binomial(xt,p) is the number of sched-
uled patients that arrive right at the beginning of slot t � 1,
2, : : : ,n. Independently from the schedule x and the system’s
workload, unscheduled walk-ins may arrive throughout the
day. The arrival process from unscheduled walk-ins is an
independent sequence (but not necessarily identically dis-
tributed) of random variables denoted by U � (U1,U2, : : : ,
Un) ∈ Z

n
+. The resulting arrival process from both schedule x

and walk-ins is denoted by the random vector Ax � (Ax
1,A

x
2,

: : : ,Ax
n) ∈ Z

n
+, where Ax

t � Sxt +Ut is the total number of
patients that arrive right at the beginning of slot t � 1, 2, : : : ,n.
The service discipline is first-in, first-out, and scheduled
patients have priority over unscheduled walk-in patients
when they show up at the same slot.

• Service times: Service times are i.i.d. random variables
following some general distribution (either continuous, dis-
crete, or a mixture) with finite mean and variance. Let R be
the random variable representing the consultation duration
of one patient. We denote the k -fold convolution of R as
R(k) �∑k

i�1Ri, where Ri ~ R, and as a notational convention,
we consider that R(0) � 0 with probability one.

• Workload process: The workload of the system right at
the end of slot t, that is, the unfinished workload carried for-
ward from slot t to slot t + 1, is denoted byWx

t . The workload
process Wx � (Wx

1,W
x
2, : : : ,W

x
n) ∈ R

n
+ satisfies the recursion

Wx
t �max{Wx

t−1 +Yx
t − k, 0}, where Wx

0 � 0 with probability
one, andWx

n corresponds to the overtimeworkload.
Let the random variables I(x), O(x), Ws(x), and Wu(x)

denote the system’s total idle time, overtime, scheduled
patients’ aggregate waiting time, and unscheduled walk-in
patients’ aggregate waiting time, respectively, under schedule
x. Their expectations can be expressed in terms of the expected
workload process. In particular, let Gx

t (w)¢P(Wx
t ≤ w), w ≥ 0,

denote the cumulative distribution function (CDF) of Wx
t . As

a notational convention, we letGx
0(w) � 1 for allw ≥ 0. Let also

Hx
t (y)¢P(R(Ax

t ) ≤ y), y ≥ 0, denote the CDF of Yx
t . Then, G

x
t (·)

can be expressed recursively for t � 1,2, : : : ,n as Gx
t (w) �∫ k+w

0
Gx

t−1(w+ k− y) dHx
t (y), w ≥ 0, and the performancemea-

sures of interest as E[I(x)] � E[Wx
n] + N − E[R]∑n

t�1(pxt+
E[Ut]), E[O(x)] � E[Wx

n], E[Ws(x)] �∑n
t�1 pxtE[Wx

t−1] +E[St[
(St − 1)]E[R]2 ], and E[Wu(x)] � ∑n

t�1 E[Ut]E[Wx
t−1] +E[Ut]pxt[

E[R] +E[Ut(Ut − 1)]E[R]2 ], where E[Wx
t ] �

∫ ∞
0
w dGx

t (w) for all
t � 1, 2, ::::,n:
A waiting cost cs(cu) is incurred for each minute that a

scheduled (unscheduled) patient has to wait before starting
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service. There is an idle time cost ci per minute of idle time,
and an overtime cost co is incurred for each minute the sys-
tem has to operate overtime until all patients are served. The
corresponding intraday cost function is defined as

intra(x) � ciE[I(x)] + coE[O(x)] + csE[Ws(x)] + cuE[Wu(x)]:
(B.1)

Theorem B.1. (Zacharias and Yunes 2020). The function
intra(·) in (B.1) is multimodular on Z

n
+.
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