
October 9, 2016 International Journal of Production Research tPRSguide

To appear in the International Journal of Production Research
Vol. 00, No. 00, 00 Month 20XX, 1–22

A branch and bound algorithm for scheduling unit size jobs on parallel

batching machines to minimize makespan

Onur Ozturka, Mehmet A. Begenb∗ and Gregory S. Zaricb

aUniversité Paris-Est, ESIEE Paris, Département Ingénierie des Systèmes, 2, boulevard Blaise Pascal Cité

Descartes BP 99 93162 Noisy le Grand Cedex, France; bIvey Business School, Western University, London

ON Canada

(Received 00 Month 20XX; accepted 00 Month 20XX)

In this paper we present a branch and bound algorithm for the parallel batch scheduling of jobs having
different processing times, release dates and unit sizes. There are identical machines with a fixed capacity
and the number of jobs in a batch cannot exceed the machine capacity. All batched jobs are processed
together and the processing time of a batch is given by the greatest processing time of jobs in that
batch. We compare our method to a mixed integer program as well as a method from the literature that
is capable of optimally solving instances with a single machine. Computational experiments show that
our method is much more efficient than the other two methods in terms of solution time for finding the
optimal solution.

Keywords: scheduling, batch scheduling, parallel machines, makespan, branch and bound, heuristics,
mathematical programming

1. Introduction

In this study, we investigate the parallel batch scheduling of unit size jobs with different processing
times and release dates on parallel identical machines. Each machine can process multiple jobs
simultaneously as long as the capacity constraint is not violated. All jobs processed at the same
time constitute a single batch. The processing time of a batch is given by the longest processing
time of any job contained in that batch. The objective is to minimize makespan. Batch processing is
encountered in casting, metallurgy, aircraft manufacturing, burn-in operations of integrated circuit
and sterilization services of hospitals (Mathirajan and Sivakumar (2006); Ozturk, Begen, and Zaric
(2014)).

Using Graham’s notation (Graham et al. (1979)), this is a P |p − batch, rj , pj , B < n|Cmax

scheduling problem. In this notation, P stands for identical parallel machines and p − batch for
parallel batching, i.e., more than one job can be processed at the same time in a machine. Job
release dates and processing times are denoted by rj and pj , respectively. The number of jobs is
given by n and B is the batch/machine capacity. Finally, Cmax refers to the objective function,
i.e., minimization of makespan.

Our problem is NP hard by the following argument. A special case of our problem is the case
in which each batch can process a single job at a time, i.e., a classical scheduling problem in the
presence of jobs with release dates, different processing times and parallel machines. This special
case was shown to be NP-hard (Pinedo (2012)); thus, our problem is also NP-hard. Although there
are exact solution procedures for the case of a single batching machine, there are only heuristics,

∗Corresponding author. Email: mbegen@ivey.uwo.ca

October 9, 2016 International Journal of Production Research tPRSguide

meta-heuristics and approximation algorithms in the literature for the case of parallel machines.
In this paper, we develop a branch and bound algorithm (B&B) which is able to find the optimum
solution much faster than the state of art branch and bound algorithm proposed by Sung and
Choung (2000) for single machine problems. Moreover, our method is able to solve parallel machine
instances in a reasonable amount of time when the number of machines in problem instances is
small.

The remainder of this paper is organized as follows. In section 2, we provide a literature review
of batch scheduling problems. Section 3 is dedicated to the presentation of the branch and bound
algorithm. Lower bounds and a heuristic method are also presented in section 3. Section 4 presents
computational tests. In section 5, we conclude and propose some further research directions.

2. Literature Review

We review here only parallel batch scheduling literature considering different processing times,
release dates and unit sizes for jobs. We classify the literature according to the solution methods.
The literature review presented in this section is not exhaustive. We refer the reader to review
articles by Potts and Kovalyov (2000) and Mathirajan and Sivakumar (2006) for further information
about batch scheduling.

2.1 Exact methods for NP-hard batching problems

Sung and Choung (2000) studied the minimization of makespan on a single machine and presented
a branch and bound algorithm which is based on enumerating every possible sequencing of jobs
and applying lower bound cuts to minimize the search space. To the best of our knowledge, the
algorithm they developed is the only exact method for our problem. In a second paper, Sung et al.
(2002) took into account job families and they constructed their branch and bound tree as in Sung
and Choung (2000). In both papers, dynamic programming algorithms were used to evaluate the
optimum makespan value of a given job sequence at each node. Tangudu and Kurz (2006) also
considered job families and proposed a branch and bound algorithm for minimizing total weighted
tardiness. Yao, Jiang, and Li (2012) studied the minimization of the sum of job completion times in
the presence of job families and a single machine, and also proposed a branch and bound algorithm.

While we are focused on the batch processing of unit size jobs in this paper, it is worth mentioning
that the only exact methods for problems considering different job sizes apply to the case of equal
release dates, i.e., rj = r ∀ j (Uzsoy (1994); Dupont and Dhaenens-Flipo (2002); Malapert, Guéret,
and Rousseau (2012); Parsa, Karimi, and Kashan (2010)).

2.2 Heuristics and approximation methods

Most solution methods for parallel batch scheduling in the literature are heuristics and approxima-
tion algorithms. Lee, Uzsoy, and Martin-Vega (1992) proposed heuristics based on list scheduling
for the problem of minimizing makespan on parallel identical burn-in ovens. Lee and Uzsoy (1999)
studied the minimization of makespan in the presence of a single machine and proposed heuristics
based on longest processing time algorithm. Uzsoy (1995) considered the same problem taking into
account job families. Deng et al. (2005) and Liu and Cheng (2005) proposed polynomial time ap-
proximation schemes for minimizing the sum of completion times and weighted sum of completion
times, respectively, in the presence of a single machine.

Cheraghi, Vishwaram, and K.K. (2003) and Gupta and Sivakumar (2006) developed genetic
algorithms for minimizing maximum lateness and maximum tardiness, respectively, on a single
machine. When parallel machines are considered, Mönch et al. (2005) used genetic algorithms

2

October 9, 2016 International Journal of Production Research tPRSguide

for minimizing total weighted tardiness. Beside heuristic approaches for parallel machines, we
encounter also polynomial time approximation schemes in Li, Li, and Zhang (2005), Liu, Ng, and
Cheng (2009) and Li and Yuan (2010).

Ozturk, Begen, and Zaric (2014) studied the batch scheduling of jobs having different release
dates and sizes, but equal processing times. They presented a branch and bound heuristic based
on a binary tree. Note that the difficulty of our problem is due to different job processing times
and thus a binary tree as presented in Ozturk, Begen, and Zaric (2014) is not sufficient to cover
all possible time moments to compute the optimal makespan value. The difficulty of their problem
is due to different job sizes and even the special case with equal release dates is NP-hard. Parsa,
Karimi, and Husseini (2016) also studied the case with different job sizes to minimize total flow time.
They developed an ant colony method in which the optimal total tardiness of each job sequence is
found with a dynamic programming algorithm. Zarook et al. (2015) took into account the aging
effect of machines (which results in a decrease in the processing speed) and minimized makespan
in an application of a maintenance planning scheduling. Another application in batch scheduling
comes from integrated scheduling of a system of supplier, manufacturer and customers. Cheng et al.
(2015), in addition to batch scheduling, considered the delivery of batches using a fixed capacity
vehicle following a production process. Cheng, Li, and Hu (2015) and Cheng, Yang, and Hu (2016)
also tackled the delivery issue after the processing of batches for different configurations (e.g.,
single customer or multiple customers, vehicle with different capacities). Agnetis, Aloulou, and Fu
(2014) studied the coordination of batch production and interstage batch delivery using a third-
party logistic provider. In a later paper, Agnetis et al. (2015) improved the dynamic programming
algorithms developed in Agnetis, Aloulou, and Fu (2014).

Although several authors have studied similar problems, the work of Sung and Choung (2000)
remains the state of the art for our problem and we use their algorithm for benchmarking.

2.3 Contribution of this paper

The batch scheduling literature is dominated by heuristic and meta heuristic methods. Sung and
Choung (2000) proposed the only exact method for the parallel batching problem of jobs with
different processing times, release dates and unit sizes in the presence of a single machine. We
propose here a new branch and bound (B&B) algorithm and test its quality on a wide range
of instances. Numerical results show that our B&B can find the optimum solution much faster
than the one proposed by Sung and Choung (2000). Moreover, the structure of our B&B allows
generalizing the solution procedure for the case of parallel machines.

3. Branch and Bound Algorithm: B&B

The branch and bound method that we propose consists of two phases. The aim of the first phase
is to decompose the problem into two parts by determining an instant that we call the “critical
instant (cI)”. If all the jobs released earlier than cI can be processed before cI, then the rest of
the jobs can be treated separately by the enumeration scheme at the second phase. To calculate
the instant cI, we obtain first a modified subproblem by changing the processing times by setting
them equal to the largest processing time among those jobs whose release dates are smaller than
cI (pmax ← max(pj) ∀ j such that rj < cI). Then, the modified subproblem with equal processing
times is optimally solved with the greedy algorithm of Ozturk et al. (2012). If all jobs can be batched
and processed before cI, then those jobs are excluded from the original problem instance and hence
we obtain a smaller problem to deal with. The pseudo code of the critical instant procedure is given
in Appendix A.

The second phase of the branch and bound algorithm constructs a search tree by intelligently
exploring instants that can be reached through different batch assignments. Each node v of the

3

October 9, 2016 International Journal of Production Research tPRSguide

search tree is characterized by an instant t, list of machines and two job lists: joblist1 representing
the list of jobs which have been released but not processed, and joblist2 representing the list of
jobs which have not been released yet. Jobs in joblist1 are thus ready for processing. Without loss
of generality, jobs in each list are sorted in non-decreasing order of release dates. At each node, the
decision is whether jobs in joblist1 should be batched and processed immediately or if processing
should be delayed until the next job (i.e., the first job in joblist2) is released. (Note that deferring
the processing of a job to an instant before the next job is released does not make sense.) Delaying
the processing of a batch results in having child nodes for each parent node. In the branch and
bound tree, the leftmost branch of a parent node represents processing no batch and waiting for a
new job to be released, and all right branches represent the creation and processing of batches.

We give an overview of the branching scheme. Suppose there are M machines and k jobs are
available for processing at node v.

1- Branch left by processing no job in joblist1 and wait for the release of first job in joblist2.
This creates a child node representing all elements of joblist1 plus the first job(s) of joblist2.

2- Branch right by creating k different batches each having a processing time equal to processing
time of k jobs in joblist1. Apply a modified version of the longest processing time rule to jobs
present at node v to fill each batch without changing the processing time.

3-Assign a new created batch to each of M machines. This results in M child nodes.
4- Use lower bound methods to make necessary cuts.

We describe these steps more in detail in the following sections. The pseudo code of the branch
and bound algorithm is given in Appendix A.

3.1 Branching step

As mentioned earlier, there are two types of branches at each node of the branch and bound tree:
- a branch representing processing no job,
- at least one branch representing the processing of a batch.

3.1.1 Left branching

The leftmost branch of a node represents processing no job. Let v be a node and t be an instant
corresponding to node v. t is either the greatest job release date in joblist1 or an instant when a
machine becomes idle. By definition of joblist1 and joblist2, the first job in joblist2, say job j, has a
release date greater than t. The next instant to be explored by left branching is then rj . Moreover,
when a child node is created by left branching, the job lists are updated as the following: let rfirst
be the release date of the first job in joblist2, joblist1 ← joblist1∪ job(s) j and joblist2 ← joblist2
- job(s) j such that rj = rfirst. The idea of left branching is to delay a job (or jobs) to put it (or
them) in a batch with some other jobs which become available later.

3.1.2 Right branching

The right branches of a node represent the processing of batches. Suppose there is just a single
job, say job j with processing time pj , available at an instant t. Then the right branch at instant
t represents the processing of job j. If, however, there is more than one job available at t, then we
need to explore every possible instant that can be reached from t. Let k be the number of jobs
available at t and let pt1 , pt2 , ..., ptk be the processing times of these jobs. We thus create k batches
each having a processing time equal to pt1 , pt2 , ..., ptk . This way, each batch has its first element
that determines the batch processing time. Once the processing time of a batch is determined, a
modified version of the longest processing time (LPT) rule, called LPTbatch, is applied to fill the
remaining available space in each batch. In the LPT rule, jobs are first sorted in non-increasing

4

October 9, 2016 International Journal of Production Research tPRSguide

order of processing times. Then batches are filled in that order. The first dn/Be−1 batches are full
and the last batch contains n−B ∗ (dn/Be− 1) jobs. On the other hand, LPTbatch creates a single
batch respecting the processing time ptl of the branch. This algorithm sorts jobs in non-increasing
order of processing times. Then, starting from the first element of the sorted list, a job is put in
the batch if its processing time is smaller or equal to the processing time of the batch, i.e., ptl . The
algorithm stops if the batch capacity is reached or if all jobs are batched. This process is repeated
for all different processing times pt1 , pt2 , ..., ptk . If there are several jobs having the same processing
time ptl , tie is arbitrarily broken in the sorting process. Moreover, as will be discussed below, a
single branch is formed for the processing time ptl .

To illustrate the batch creation procedure, suppose there are 3 jobs j1, j2 and j3 available at
instant t representing a node v. Let their processing times be p1, p2, and p3 in non-decreasing order
(i.e., p1 ≤ p2 ≤ p3). Since all jobs are available at t, their release dates are smaller or equal to
t. Suppose that there is just one machine with capacity 2 which is idle at t′ (t′ can be smaller,
greater or equal to t). Then, because we have three jobs with different processing times present
simultaneously at t, we create three batches, i.e., 3 child nodes for node v. The first batch has
a processing time equal to p1, the second batch has a processing time equal to p2 and p3 is the
processing time for the third batch. Because LPTbatch is applied to jobs present at node v, the
first batch contains only j1, the second batch contains j2 and j1 and the third batch contains jobs
j3 and j2. Moreover, the processing of these batches gives the following instants for child nodes:
max(t, t′) + p1, max(t, t′) + p2 and max(t, t′) + p3. An illustration is given in Figure 1. Note that
we do not have a batch with all 3 jobs since the machine capacity is 2.

...

t

rk

(rk > t)

...

Process 0
jobs

max(t,t’)+p1

...

max(t,t’)+p2
max(t,t’)+p3

Process
j1

Process j2
and j3Process

j1 and j2

Figure 1. Exploration of instants for a single machine problem with capacity equals to 2

Proposition 1: LPTbatch creates optimum batches.

Proof. Because for every available job at instant t a batch is created, a processing time, pj , is
assigned to each batch in which job j becomes the first element of the batch. The remaining space
in each batch must be filled with jobs whose processing times are smaller or equal to pj for two
reasons: 1-not to repeat any other right branch(es) by putting in the same batch a job k such that
pk > pj , 2-not to have a longer processing time for a following batch.

Let Jb be the set of jobs put in batch b with LPTbatch. Consider the case that the remaining
available space in batch b is not filled using LPTbatch and let J ′b be the set of jobs in the new batch
configuration denoted by b′. Since the first element of each batch is the same in both batches,
pj ≥ pj′ ∀ j′ ∈ J ′. Now, consider a job k which is in batch b but not in b′. Because there is no
guarantee that jobs with greater processing times are prioritized in batch b′ (unlike LPTbatch, in
which jobs are prioritized), there is an element k′ of J ′b put in batch b′ such that either pk′ = pk or
pk > pk′ . If pk′ = pk, then subsequent batches are not affected by the alternation of jobs k and k′.
However when pk > pk′ , the processing time of the subsequent batch bs containing job k is affected

5

October 9, 2016 International Journal of Production Research tPRSguide

by the alternation of jobs k and k′ if job k is the first job of batch bs. Let ps2 be the second greatest
processing time in batch bs. Then, the length of batch bs is increased by pk −max(pk′ , ps2). If job
k is not the first job in batch bs, alternating jobs k and k′ does not affect the processing time of
batch bs. Hence in each case LPTbatch yields a smaller or equal batch completion time compared
to any other batch creation procedure and thus provides optimum batches.�

Next we provide a condition that avoids having multiple right branches, i.e., batches having the
same processing time.

Proposition 2: If at instant t two or more jobs have the same processing time pt, then it is
sufficient to create a single right branch corresponding to the batch having processing time pt.

Proof. Creating two or more right branches/batches having equal processing times is redundant
since LPTbatch would assign the same jobs to those batches. �

If all jobs are released but some jobs are not processed yet, then there is no need for delaying
the processing of these jobs to a greater instant. Since delaying is done by left branching, if all jobs
are released, only right branching is done to explore new instants. Let rn denote the greatest job
release date and t an instant.

Proposition 3: For all nodes representing an instant t such that t ≥ rn, only right branching is
done using the LPT rule.

Proof. Since all jobs are available by instant t, there is no more need for delaying jobs. Thus, the
LPT rule can be applied to create batches. �

Whenever jobs are delayed, we show by the following proposition that it is not optimal to process
them solely with other delayed jobs.

Proposition 4: Let t be an instant reached through left branching following instant t′. If a job j
could have been processed at instant t′ but was delayed until t, then it is not optimal to process
job j alone or with other delayed jobs at t.

Proof. If a job j is delayed that could be processed earlier at instant t′, then batching and
processing j all alone or with some other delayed jobs at instant t increases the processing ending
time of the batch by t− t′ compared to processing the same batch at instant t′. �

3.1.3 Updating and using the critical instant cI for further pruning

Recall that phase 1 calculates an initial critical instant cI before which all jobs can be processed
without interacting with jobs released later or at cI. Since the same kind of instants (i.e., an
instant t at which joblist1 is empty and the first job release date in joblist2 is greater or equal
to t) can be encountered more than once during the enumeration process, the critical instant can
be updated during the exploration of the branch and bound tree. Thus, if there is an instant t
greater than cI such that jobList1 = ∅ and jobList2 6= ∅ (rj ≥ t ∀ j ∈ jobList2), then cI ← t.

Proposition 5: If during the solution process, a node v′ represents an instant t′ smaller or equal
to cI, then node v′ is pruned.

Proof. It is sufficient to explore only a single time child nodes of the node representing instant cI
to reach the optimal makespan. Thus if the same instant cI is encountered in another node, there
is no need to go further and the node is pruned. Similarly, since exploring only a single time child
nodes of the node representing instant cI gives the optimal makespan, if another instant t′

smaller than cI is encountered recursively, it is also pruned. �

6

October 9, 2016 International Journal of Production Research tPRSguide

3.1.4 Generalization to parallel machines

The above branching schemes let us generalize the B&B to the case of parallel machines. Machine
assignment of batches is done in the following way. Once batches are formed according to the above
branching rules, we try all possible configurations by assigning the batches to every machine (such
an assignment procedure is necessary since jobs have different processing times). More precisely, if
a batch b is to be processed and if we have M machines available, batch b is processed on machine 1,
then on machine 2, and so on until M . Thus, processing batch b results having M child nodes. We
illustrate the assignment procedure in Figure 2. Let v be a node representing instant t at which two
non-delayed jobs j1 and j2 are ready for processing. Let p1 and p2 be the processing time of these
jobs (p1 < p2). There are two machines with capacity two and their idle times are tm with m = 1, 2
(tm can be smaller, greater or equal to t). The creation of batches and machine assignments are
shown as child nodes of v in Figure 2.

Figure 2. Illustration of batch creation and machine assignment

Proposition 6: If more than one machine becomes idle at the same time, then it is sufficient to
assign the batch to a single machine among those becoming idle at the same time.

Proof. Since machines are identical, assigning the batch to only one machine in the case of equal
machine idle times prevents equivalent solutions and decreases the search space of the branch and
bound tree. �

Because of proposition 6, we implement a tie-breaking rule that always chooses the biggest
indexed machine among those machines idle at the same time.

A numerical example and its solution with the proposed branching scheme is presented in Ap-
pendix B.

3.2 Lower bounds

We develop three approaches for finding a lower bound (LB) which are calculated at each node of
the search tree.

LB1: The first lower bound calculation uses the minimum machine idle time and the job j that
has the greatest completion time value among all unprocessed jobs. Let dispmin be the minimum
machine idle time (dispmin = min(tm) where tm is the instant machine m becomes idle). Job j is
identified by argmax(max(dispmin, rj) + pj). We have thus LB1 = max(dispmin, rj) + pj which is
a lower bound value.

LB2: The second lower bound is based on the LPT rule. If all jobs are released at the same time

7

October 9, 2016 International Journal of Production Research tPRSguide

(i.e., rj = r ∀ j), then LPT is optimal for the makespan criterion in the case of a single machine
(Pinedo (2012)). If, however, there are several identical machines, then a lower bound is obtained
by first applying the LPT rule to all unprocessed jobs, making the sum of all batch processing
times, and then dividing the found value by the number of machines.

Let valueLPT be the value from applying LPT to all unprocessed jobs as if they were all present
at the same moment and were processed on a single machine. Let rmin be the smallest release
date of jobs among unprocessed jobs. Then, the second lower bound is calculated by the following
formula: LB2 = max(dispmin, rmin) + valueLPT /M .

LB3: Ozturk et al. (2012) proposed an optimal algorithm for the problem of minimizing Cmax

in the presence of divisible jobs with different sizes, release dates and equal processing times. This
problem is a special case of ours since we consider unit job sizes and different processing times. Then
a lower bound for our problem can be obtained by first modifying the input of the original problem
such that pmin ← min(pj) ∀ j, i.e., selecting the minimum processing time as the processing time
of all jobs, and then applying the greedy algorithm proposed by Ozturk et al. (2012).

However, setting all job processing times equal to the smallest one leads to a poor relaxation of
the original problem when there is a huge gap between the smallest and biggest processing times.
Thus instead of setting a global smallest processing time with pmin ← min(pj) ∀ j, we determine a
time window [rk, rl[, and set pmin ← min(pj) ∀ j for rj ∈ [rk, rl[. If all the jobs j can be processed
with the greedy algorithm of Ozturk et al. (2012) before the release of job l, then the time window
is updated as [rl, rl+1[and a new pmin is calculated. Otherwise, the time window is updated as
[rk, rl+1[. This way, each time window has its own smallest processing time that leads to a better
relaxation. Let LB3 represent the numerical value of the third LB.

The maximum among previous values is chosen as the lower bound; i.e., LB = max{LB1, LB2,
LB3}. The running time of the algorithms is O(n) for LB1 and LB2. The LB3 is computed in O(n2)
time. At each node of the search tree, all unscheduled jobs are taken into account to calculate a
lower bound. Then, if the obtained lower bound value is greater than the best Cmax value obtained
so far, the branch is pruned. The performance of the three lower bound methods is discussed in
the numerical tests section.

3.3 Initialization heuristic

Initializing the branch and bound procedure with a Cmax value close to optimal is important to
reduce the solution time. In this section, we propose a moving interval heuristic that is used to
find an initial solution at the root node of B&B.

The heuristic starts by defining a time window [0, t], then proceeds by creating a single batch
with jobs whose release dates are in that time window applying the LPTbatch procedure of B&B.
Considering the determination of the time window, it begins at instant 0 and its length t is
determined by max(rk, first machine idle time) where rk is the release date of job k and k is a
parameter varying between 1 to n. We provide the pseudo code of the initialization heuristic and
its complexity in Appendix A.

4. Numerical Tests

In this section, we test our branch and bound procedure on a wide range of instances. For bench-
marking, we use the branch and bound algorithm of Sung and Choung (2000) for instances contain-
ing only a single machine. Sung and Choung (2000) have also proposed a mixed integer linear model
(MILP) which can easily be generalized to parallel machine problems. Thus, a second benchmarking
is done implementing the MILP model in CPLEX 12.6.

Job release dates and processing times are generated as indicated in Sung and Choung (2000).

8

October 9, 2016 International Journal of Production Research tPRSguide

Job processing times are generated using a U[1, 20] distribution. There are three types of ranges
for generating job release dates which are U[0, 5], U[0, 20] and U[0, 5*n] where n is the number of
jobs in the instance. We test instances containing 10, 15, 20, 25, 30, 50, 75 and 100 jobs. Instances
containing 30 jobs or less are called small instances while others are called big instances. Machine
capacity is varied as 3 or 5. For each combination of different release date type, machine capacity
and number of jobs, 10 problem instances are generated (thus more than 1200 instances are tested
throughout this section). Algorithms are coded in Java and an Intel i5-4570 CPU with 3.20 Ghz.
machine is used for all numerical tests. The solution time limit is set to 900 seconds.

4.1 Benchmarking between branch and bound methods (on a single machine
instances)

Throughout the rest of this section, we denote our method as B&B and the method of Sung
and Choung (2000) as B&BLit. Tables 1 and 2 show for both methods average number of nodes,
average solution time in seconds and number of instances solved within 900 seconds. For instances
which are not solved within 900 seconds, we report the gap between B&B and B&BLit using the
following formula: [(MakespanB&BLit

− MakespanB&B)/MakespanB&B] ∗ 100. For the average
number of generated nodes, M denotes a number bigger than 100 million. We report also some
results considering the performance of the heuristic in the last columns of tables. Column 9 shows
the number of times the heuristic finds the optimal or best solution (best in case an instance is not
optimally solved within 900 seconds by B&B). Column 10 reports the average gap of the heuristic
solution for instances that the heuristic cannot find the optimal or best solution. We do not report
any results for the MILP model since it is not efficient for single machine instances. As an example,
even the simplest instances containing 20 jobs are not optimally solved within 60 seconds with the
MILP model and the optimality gap is around 30%.

Both branch and bound methods are sensitive to job release dates. When job release dates
are generated from a U[0,5] or U[0,20] distribution, both methods can easily find the optimum
solution in less than 1 second for small sizes instances in the presence of a machine with capacity
3. However, B&BLit is more sensitive to number of jobs and the machine capacity than B&B.
Their algorithm is based on enumerating different job sequences. The optimal makespan value of
a job sequence is found with a O(n ∗ Cap) pseudo polynomial dynamic programming algorithm
where n is the number of jobs in the sequence and Cap is the machine capacity. Thus, increasing
n and Cap decreases the performance of B&BLit. However, increasing the machine capacity has
a positive impact on our method. When the machine has a larger capacity, branches representing
batch processing have the possibility to put larger numbers of jobs in a batch. Thus the number
of unprocessed jobs decreases more quickly which results having a smaller problem to deal with.

When the number of jobs is greater than 50, the solution time with B&BLit increases while B&B
can easily solve the same instances within milliseconds. Table 1 also shows how B&BLit is sensitive
to machine capacity. When the machine capacity is equal to 5, only instances that B&BLit can
solve in less than 1 second contain less than or equal to 15 jobs for rj ∈ [0, 5] or rj ∈ [0, 20]. B&B
can solve any instance in less than 1 second for any machine capacity and job release date except
for rj ∈ [0, 5 ∗ n].

For instances with rj ∈ [0, 5 ∗ n], B&B is again able to find the optimal solution faster than
B&BLit. Nevertheless, there is a decrease in its performance compared to other instances. This is
due to having a large range for job release dates in which case left branching, i.e., delaying the
processing of jobs, occurs more often in the search tree. Moreover, delaying jobs also results having
more right branches which increases the search space to be explored.

The optimality gap of the initialization heuristic is approximately 10% on instances for which
it cannot find the optimal or best solution. We also observed that for a small range of release
dates, the heuristic performs quite good and finds most of the time the same solution as given by

9

October 9, 2016 International Journal of Production Research tPRSguide

B&B. Otherwise, when the release date are generated on a wide range such as rj ∈ U [0, 5 ∗n], the
performance of the heuristic decreases due to determining only few instants (i.e., job release date
or machine idle time) for batch creation.

To have a better understanding about the efficiency of the cI, same instances were also tested
without the cI phase. Numerical results showed that the solution time of optimally solved instances
increased by almost 50% when cI is not included in the branch and bound algorithm.

Table 1. Comparison between branch and bound methods for capacity = 5

B&B B&BLit Avg. Heuristic LB.

No. of Avg. Avg. # Avg. Avg. # gap # Avg. Avg. gap

of jobs nodes time solved nodes time solved (in %) best gap (root node)

rj ∈ U [0, 5]

10 6 < 1 10 53701 < 1 10 0 9 2% 13 %

15 11 < 1 10 40106 < 1 10 0 9 1% 7 %

20 14 < 1 10 135167 5 10 0 5 2% 4%

25 21 < 1 10 403493 32 10 0 7 2% 3 %

30 24 < 1 10 644455 81 10 0 8 3% 2 %

50 42 < 1 10 1952170 > 900 0 0 6 5% 1 %

75 70 < 1 10 1262440 > 900 0 6.3 5 4% 0.2 %

100 99 < 1 10 1130567 > 900 0 15.9 7 2% 0.1 %

rj ∈ U [0, 20] 10

10 25 < 1 10 80613 < 1 10 0 6 7% 17%

15 42 < 1 10 62601 < 1 10 0 7 6% 21%

20 99 < 1 10 507205 9 10 0 3 7% 14%

25 97 < 1 10 1685376 58 10 0 2 8% 13 %

30 160 < 1 10 4357453 213 8 0 2 4% 9%

50 302 < 1 10 3915114 894 1 0 2 5% 4%

75 258 < 1 10 3365860 > 900 0 8.7 3 12% 1%

100 401 < 1 10 2580183 > 900 0 21.6 2 13% 1%

rj ∈ U [0, 5 ∗ n]
10 270 < 1 10 154885 < 1 10 0 3 15% 4%

15 1246 < 1 10 M 596 4 0 5 14% 3%

20 3695449 2.5 10 89737022 630 3 0 1 15% 3%

25 M 222 8 76627890 723 2 0 - 9% 1.8%

30 M 360 6 53683209 646 3 0 - 12% 2%

50 M 270 7 17522289 > 900 0 0 4 8% 0.6%

75 M 180 8 14114639 > 900 0 0.15 1 7% 0.9%

100 M 274 7 12182870 > 900 0 0.15 2 8% 0.9%

4.2 Performances of B&B on parallel machine instances

To the best of our knowledge, other than the MILP model we use, there is no other exact method to
solve the case of parallel machines. As mentioned previously, B&BLit of Sung and Choung (2000)
is based on evaluating different job sequences with a pseudo polynomial time algorithm such that
optimal batches are ordered on a single machine. Their method cannot be generalized to the case
of parallel machines using the branching scheme we presented in section 3.1.4 since our B&B is
based on exploring time moments and theirs is based on evaluating job sequences at each node.

We test here the performance of B&B on instances containing 2, 3 and 4 machines and 10, 20

10

October 9, 2016 International Journal of Production Research tPRSguide

Table 2. Comparison between branch and bound methods for capacity = 3

B&B B&BLit Avg. Heuristic LB.

No. of Avg. Avg. # Avg. Avg. # gap # Avg. Avg. gap

of jobs nodes time solved nodes time solved (in %) best gap (root node)

rj ∈ U [0, 5]

10 17 < 1 10 144 < 1 10 0 7 5% 2%

15 22 < 1 10 370 < 1 10 0 8 8% 2%

20 24 < 1 10 686 < 1 10 0 4 2% 1.6%

25 40 < 1 10 1365 < 1 10 0 6 4% 0.8%

30 39 < 1 10 1762 < 1 10 0 5 3% 0.8%

50 68 < 1 10 6338 1 10 0 4 1% 0.1%

75 104 < 1 10 14891 12 10 0 5 4% 0%

100 148 < 1 10 33668 64 10 0 3 2% 0%

rj ∈ U [0, 20]

10 33 < 1 10 244 < 1 10 0 5 5% 16%

15 44 < 1 10 335 < 1 10 0 4 4% 10%

20 85 < 1 10 988 < 1 10 0 2 3% 7%

25 124 < 1 10 1436 < 1 10 0 6 10% 3%

30 146 < 1 10 3165 < 1 10 0 7 9% 3%

50 230 < 1 10 9522 < 1 10 0 4 4% 0.9%

75 432 < 1 10 27902 9 10 0 2 7% 0.3%

100 604 < 1 10 72079 49 10 0 4 5% 0.2%

rj ∈ U [0, 5 ∗ n]
10 96 < 1 10 4180 < 1 10 0 3 15% 12 %

15 11130 < 1 10 5971092 29 10 0 2 12% 6 %

20 3503878 3.2 10 50900448 533 5 0 3 12% 5 %

25 M 180 9 49412478 > 900 2 0 4 9% 6 %

30 M 469 5 M 812 2 0 1 10% 7%

50 M 810 1 M > 900 1 0.7 1 11% 3.5 %

75 M > 900 2 M > 900 2 1.9 - 12% 4 %

100 M > 900 1 M > 900 1 2.8 2 9% 3.8%

and 30 jobs. Batch capacity is varied as 3 and 5. MILP performance is also reported. We observed
that first unsolved instances within 900 seconds contain 20 or 30 jobs depending on the job release
date type. Thus, we limited the number of jobs to 30. For each release date type, machine capacity,
number of machines and number of jobs, we tested 10 instances.

While there is a decrease in the performance of B&B due to the machine assignment procedure,
the results are promising especially compared to the performance of MILP. Figure 3 shows the
percentage of times that one method is faster the other one for finding the optimal solution. If
classified according to job release dates, B&B has a better performance for instances of rj ∈ U [0, 5],
i.e., when job release dates are generated in a small range compared to job processing times. This
is because when the last job release date is small enough, there are mostly right branches which
results having a smaller search tree.

Another performance measure we tested is the number of instances solved within 900 seconds.
We observed that for instances of rj ∈ U [0, 5] B&B largely dominates MILP. Only instances that
cannot be optimally solved contain 30 jobs. For rj ∈ U [0, 20], both methods perform similarly and
35% of instances are not optimally solved. For rj ∈ U [0, 5 ∗ n], MILP dominates B&B when the
machine capacity is 3. 10% of instances cannot be optimally solved by B&B while this percentage
is 3% for MILP. When the capacity is 5, however, both methods find the optimal solution for every
single instance and B&B is much faster than MILP. The increase in the performance of B&B is

11

October 9, 2016 International Journal of Production Research tPRSguide

51
53

26

31

37

62

4 4

15

20

26

4
0

10

20

30

40

50

60

70

Cap = 3 Cap = 5 Cap = 3 Cap = 5 Cap =3 Cap = 5

rj∈ [0, 5] rj∈ [0, 20] rj∈ [0, 5*n]

%
 o

f
ti

m
e

s
o

n
e

 m
e

th
o

d
is

fa
st

e
r

th
a

n
th

e
 o

th
e

r
o

n
e BB

BB

BB

BB

BB

BB

MILP MILP

MILP

MILP

MILP

MILP

Figure 3. Percentage of time B&B dominates MILP model for solution times

due to increasing batch capacity and the use of critical instant, cI. When job release dates are
generated in a large range and if there is more than one machine, it is possible to find an initial cI
to decrease the size of the problem, and hence the size of the search tree.

4.3 Quality of the lower bound

To have a better insight on the quality of lower bound cuts in the solution process, we tested
some of the same instances omitting the lower bound method from the algorithm and observed a
huge increase in the solution time. For example in single machine instances, the solution time is
around 10 seconds for a 35 job instance and 45 seconds on a 40 job instance when rj ∈ U [0, 20]
or rj ∈ U [0, 5] and capacity = 5. The last columns of Tables 1 and 2 represent the average gap
obtained with the lower bound algorithm at the root node. Recall that there are three methods
that apply to calculate a lower bound. A detailed analyses showed that the individual lower bound
quality of those methods vary according to the instance type. When job release dates are in a
small range, i.e., rj ∈ U [0, 5], method two (based on the longest processing time algorithm) is the
dominant one for all tested instances. For rj ∈ U [0, 20] LB1 provides the best lower bound values
and for rj ∈ U [0, 5 ∗ n] LB1 and LB3 are in competition.

A similar observation was done for parallel machine instances. Table 3 shows the average gap
between the lower bound and optimal values for the root node. We report also the method that
returns the best lower bound value among all (if a method finds the best LB value more than the
others, it is reported in the table). Similar to the previous results, LB2 performs better than the
other methods when job release dates are generated in a small range. However, its performance
decreases compared to the single machine case. Besides, increasing the number of machines improves
the performance of LB1 and LB3 since it becomes easier to find an idle machine for batch processing.

An interesting result is an observation on the use of LB3 for rj ∈ U [0, 5] and rj ∈ U [0, 20]
instances. LB3 has a complexity of O(n2) while LB1 and LB2 are O(n) and numerical results
showed that LB3 never gave the best lower bound value at the root node unless rj ∈ U [0, 5 ∗ n].
Since the complexity of LB3 is higher than the other methods, we omitted LB3 and tested the same
instances with rj ∈ U [0, 5] and rj ∈ U [0, 20]. As expected when the problem has a single machine,
the difference in the solution time is not significant since all instances are solved within one second

12

October 9, 2016 International Journal of Production Research tPRSguide

Table 3. Lower bound performance for the case of parallel machines

Cap = 3 Cap = 5

10 20 30 10 20 30

jobs jobs jobs jobs jobs jobs

rj ∈ U [0, 5]

M = 2 14% - LB2 4% - LB2 5 % - LB2 2 % - LB1 5 % - LB2 7 % - LB2

M = 3 1.2 % - LB1 12 % - LB2 10 % - LB2 0 % - LB1 0 % - LB2 14 % - LB2

M = 4 0 % - LB1 7.5 % - LB1 17 % - LB2 0 % - LB1 0 % - LB1 1 % - LB1

rj ∈ U [0, 20]

M = 2 3 % - LB1 17 % - LB2 23 % - LB2 1.3% - LB1 6% - LB1 21% - LB1/LB2

M = 3 0 % - LB1 4.2 % - LB1 23 % - LB1 0.4 % - LB1 0.3 % - LB1 3 % - LB1

M = 4 0 % - LB1 0 % - LB1 10 % - LB1 0% - LB1 0 % - LB1 0 % - LB1

rj ∈ U [0, 5 ∗ n]
M = 2 0.5 % - LB1/LB3 0 % - LB1/LB3 0.6 % - LB1 0.3 % - LB1/LB3 0.1 % - LB1 0.2 % - LB1

M = 3 0 % - LB1/LB3 0 % - LB1/LB3 0.1 % - LB1/LB3 0 % - LB1/LB3 0 % - LB1/LB3 0 % - LB1

M = 4 0 % - LB1 0 % - LB1 0% - LB1/LB3 0 % - LB1 0 % - LB1/LB3 0 % - LB1

of computation. Thus, we generated bigger instances containing up to 500 jobs and observed that
omitting LB3 from the algorithm decreases slightly the resolution time (e.g., around 10 seconds for
500 job instances). However, it is the complete opposite for the case of parallel machines. Although
LB3 never gave the best lower bound value at the root node for rj ∈ U [0, 5] and rj ∈ U [0, 20]
instances, testing the same instances only with LB1 and LB2 increased enormously the solution
time for the case parallel machines. For example, while 20 job and 2 machine instances are solved
very quickly (within a few seconds), when LB3 is omitted, the solution time is increased more
than 100% for all tested instances. The increase in the solution time is due to the number of
machines. LB3 procedure is sensitive to the number of machines and job release dates more than
LB1 and LB2. When, there is more than one machine, LB3 assigns a batch always to the machine
having the smallest idle time (i.e., time instant when a machine is available to process a batch)
and the processing of the batches starts without violating job release dates. The weakness of LB3

at the root node when job release dates are generated in a small range comes from making all job
processing times equal to the smallest one. However, during the solution process, the structure of
problem instances changes and better relaxations are obtained in case jobs with small processing
times are processed first.

5. Conclusion

In this paper, we studied the parallel batching problem for jobs with different processing times,
release dates and unit sizes. The objective is to minimize makespan. Most previous studies focus
on heuristic and approximation methods. For our problem, there is a single exact method in the
literature which is applied to the case of a single machine. We proposed a branch and bound
algorithm (B&B) which can handle parallel machine problem instances. We tested its performance
on a wide range of instances and compared it to the state of art branch and bound method from
the literature for instances containing only a single machine. We found that our method dominates
the other one in terms solution time. For instances containing parallel machines, our B&B is able
to solve moderate size instances within reasonable amount of time.

For future work, this study can be extended by considering jobs with different capacity require-
ments. Studying other objective functions such as minimization of total job completion times to
reduce the amount of inventory would also be a challenging task that could be tackled in future

13

October 9, 2016 International Journal of Production Research tPRSguide

research.

References

Agnetis, A., M.A. Aloulou, L.-L. Fu, and M.Y. Kovalyov. 2015. “Two faster algorithms for coordination of
production and batch delivery: A note.” European Journal of Operational Research 241 (3): 927–930.

Agnetis, A., M. A. Aloulou, and L.-L. Fu. 2014. “Coordination of production and interstage batch delivery
with outsourced distribution.” European Journal of Operational Research 238 (1): 130–142.

Cheng, B., K. Li, and X. Hu. 2015. “Approximation algorithms for two-stage supply chain scheduling of
production and distribution.” International Journal of Systems Science: Operations & Logistics 2 (2):
78–89.

Cheng, B., Y. Yang, and X. Hu. 2016. “Supply chain scheduling with batching, production and distribution.”
International Journal of Computer Integrated Manufacturing 29 (3): 251–262.

Cheng, B.-Y., J.Y.-T. Leung, K. Li, and S.-L. Yang. 2015. “Single batch machine scheduling with deliveries.”
Naval Research Logistics (NRL) 62 (6): 470–482.

Cheraghi, S. H., V. Vishwaram, and Krishnan. K.K. 2003. “Scheduling asingle batch processing machine
with disagreeable ready times and due dates.” International Journal of Industrial Engineering 10 (2):
175–187.

Deng, X., H. Feng, G. Li, and B. Shi. 2005. “A PTAS for Semiconductor Burn-in Scheduling.” J. Comb.
Optim. 9 (1): 5–17.

Dupont, L., and C. Dhaenens-Flipo. 2002. “Minimizing the makespan on a batch processing machine with
non-identical job sizes: an exact procedure.” Computers and Operations Research 29 (7): 807–819.

Graham, R.L., E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. 1979. “Optimization and approximation
in deterministic sequencing and scheduling: a survey.” Annals of Discrete Mathematics 5: 287–326.

Gupta, A.K., and A.I. Sivakumar. 2006. “Optimization of due-date objectives in scheduling semiconductor
batch manufacturing.” International Journal of Machine Tools and Manufacture 46 (12): 1671–1679.

Lee, C.Y., and R. Uzsoy. 1999. “Minimizing Makespan on a Single Batch Processing Machine with Dynamic
Job Arrivals.” International Journal of Production Research 37 (1): 219–236.

Lee, C.-Y., R. Uzsoy, and L. A. Martin-Vega. 1992. “Efficient algorithms for scheduling semiconductor
burn-in operations.” Oper. Res. 40 (4): 764–775.

Li, S., G. Li, and S. Zhang. 2005. “Minimizing makespan with release times on identical parallel batching
machines.” Discrete Applied Mathematics 148 (1): 127 – 134.

Li, S., and J. Yuan. 2010. “Parallel-machine parallel-batching scheduling with family jobs and release dates
to minimize makespan.” J. Comb. Optim. 19 (1): 84–93.

Liu, L. L., C. T. Ng, and T. C. E. Cheng. 2009. “Scheduling jobs with release dates on parallel batch
processing machines.” Discrete Appl. Math. 157 (8): 1825–1830.

Liu, Z., and T. C. E. Cheng. 2005. “Approximation schemes for minimizing total (weighted) completion
time with release dates on a batch machine.” Theor. Comput. Sci. 347 (1-2): 288–298.

Malapert, A., C. Guéret, and L.-M. Rousseau. 2012. “A constraint programming approach for a batch
processing problem with non-identical job sizes.” European Journal of Operational Research 221 (3):
533–545.

Mathirajan, M., and A.I. Sivakumar. 2006. “A literature review, classification and simple meta-analysis
on scheduling of batch processors in semiconductor.” International Journal of Advance Manufacturing
Technology 29: 990–1001.

Mönch, L., H. Balasubramanian, J. W. Fowler, and M. E. Pfund. 2005. “Heuristic scheduling of jobs on
parallel batch machines with incompatible job families and unequal ready times.” Computers & OR 32:
2731–2750.

Ozturk, O., M. A. Begen, and G. S. Zaric. 2014. “A branch and bound based heuristic for makespan
minimization of washing operations in hospital sterilization services.” European Journal of Operational
Research 239 (1): 214226.

Ozturk, O., M-L. Espinouse, M. Di Mascolo, and A. Gouin. 2012. “Makespan minimisation on parallel batch
processing machines with non-identical job sizes and release dates.” International Journal of Production
Research 50 (20).

Parsa, N.R., B. Karimi, and A.H. Kashan. 2010. “A branch and price algorithm to minimize makespan on

14

October 9, 2016 International Journal of Production Research tPRSguide

a single batch processing machine with non-identical job sizes.” Computers and Operations Research 37
(10): 1720–730.

Parsa, N. R., B. Karimi, and S.M.M. Husseini. 2016. “A neural network based approach to minimize total
completion time on a single batch processing machine.” Computers & Industrial Engineering .

Pinedo, M. 2012. Scheduling: theory, algorithms, and systems. Springer.
Potts, C.N., and M.Y. Kovalyov. 2000. “Scheduling with batching : A review..” European Journal of Oper-

ational Research 120: 228–249.
Sung, C. S., and Y. I. Choung. 2000. “Minimizing makespan on a single burn-in oven in semiconductor

manufacturing.” European Journal of Operational Research 120 (3): 559–574.
Sung, C. S., Y. I. Choung, J. M. Hong, and Y. H. Kim. 2002. “Minimizing makespan on a single burn-in

oven with job families and dynamic job arrivals.” Computers & OR 29 (8): 995–1007.
Tangudu, S.K., and M.E. Kurz. 2006. “A branch and bound algorithm to minimise total weighted tardiness

on a single batch processing machine with ready times and incompatible job families.” Production Planning
and Control 17 (10): 728–741.

Uzsoy, R. 1994. “Scheduling a single batch processing machine with non-identical job sizes.” International
Journal of Production Research 32 (7): 1615–1635.

Uzsoy, R. 1995. “Scheduling batch processing machines with incompatible job families.” International
Journal of Production Research 33 (10): 2685–2708.

Yao, S., Z. Jiang, and N. Li. 2012. “A branch and bound algorithm for minimizing total completion time on
a single batch machine with incompatible job families and dynamic arrivals.” Computers & Operations
Research 39 (5): 939–951.

Zarook, Y., J. Rezaeian, R. Tavakkoli-Moghaddam, I. Mahdavi, and N. Javadian. 2015. “Minimization
of makespan for the single batch-processing machine scheduling problem with considering aging effect
and multi-maintenance activities.” The International Journal of Advanced Manufacturing Technology 76
(9-12): 1879–1892.

15

October 9, 2016 International Journal of Production Research tPRSguide

Appendix A. Critical Instant Procedure, Branch and Bound Algorithm and Moving
Interval Heuristic

Table A1. Notation used in the algorithms

Cap machine capacity
M number of machines
m index of machines (m = 1, ...,M)
n number of jobs
j index of jobs
rj release date of job j
jobList list of jobs
jobListj jth element of jobList
rjobListj release date of job j in jobList
pjobListj processing time of job j in jobList
dispMach list containing machine idle times
dispm idle time of machine m
dispmin smallest machine availability
dispmax greatest machine availability
t an instant in the problem (i.e., a job release date or processing

ending time of a batch)
batch set of jobs ready for processing
pT ime processing duration of the batch
rT ime ready time for processing of the batch
nbrBatch number of batches
LB(.) procedure that returns a numerical value as the lower bound
// comment line
Procedure1(.) procedure responsible for right branching for instants

smaller than the last job release date
Procedure2(.) procedure responsible for right branching for instants

greater or equal to the last job release date
assign(.) procedure that returns false if two machines having

consecutive indexes have the same idle time
LPT1(.) a procedure that applies LPTbatch to jobs

of jobsList1 in order to create a single batch such that
the processing time is equal to pT ime. If there are only delayed
jobs in that batch, then no job is put into the batch

assign(.) procedure that helps to find the greatest machine index in
case some machines have the same idle time

LPT2(.) procedure that applies the longest processing time rule to
all unscheduled jobs in jobsList1

LB(.) Lower bound calculation
greedy(.) greedy algorithm of Ozturk et al. (2012) (takes a job list, a processing time

and machine list as input, returns minimal makespan value as output)
cI critical instant as a global variable (initially calculated with Algorithm 2 below)
BB abbreviation of Branch and Bound (cf. Algorithm 4)

16

October 9, 2016 International Journal of Production Research tPRSguide

Algorithm 1: Critical instant procedure

Input: jobsList, dispMach
Output: integer
Set critical instant cI ← 0
forall the jobs j in jobsList from 1 to N − 2 do

Set cI ← rj , pmax ← pj
Generate newJobList← ∅
forall the jobs k in jobsList from j + 1 to N − 1 do

newJobList← newJobList ∪ job k − 1
if pk > pmax then

pmax ← pk
end
if greedy(pmax, newJobList, dispMach) ≤ rk then

Set cI ← rk and j ← k − 1
break;

end

end
if k == N − 1 and cI == 0 then

return cI
end

end
return cI

Algorithm 2: Procedure1

Input: jobsListA, jobsListB, dispMach
Output: void
forall the jobs j in jobsListA do

jobsList1← jobsListA
jobsList2← jobsListB
pT ime← pjobList1j

rT ime← rjobList1j

jobsList1← jobsList1− batch
forall the m from 1 to M do

if assign(m, dispMach) = true then
dispmachNew ← dispMach
rT ime←Max(rT ime, dispmachNewm)
dispmachNewm ← rT ime + pT ime
if LB(jobsList1, jobsList2, dispmachNew < Cmax) then

BB(dispmachNewmin, jobsList1, jobsList2, dispmachNew)
end

end

end

end

17

October 9, 2016 International Journal of Production Research tPRSguide

Algorithm 3: Procedure2

Algorithm: Procedure2
Input: jobsListA, jobsListB, dispMach
Output: void
jobsList1← jobsListA

⋃
jobsListB

nbrBatch← d number of jobs in jobsList1/Cape
while nbrBatch > 0 do

batch← LPT2(jobsList1)
jobsList1← jobsList1− batch
nbrBatch← nbrBatch− 1
forall the m from 1 to M do

if assign(m, dispmach) = true then
dispmachNew ← dispmach
rT ime = Max(rT ime, dispmachNewm)
dispmachNewm ← rT ime + pT ime
if LB(jobsList1, jobsList2, dispmachNew < Cmax then

BB(dispmachNewmin, jobsList1, jobsList2, dispmachNew)
end

end

end

end

18

October 9, 2016 International Journal of Production Research tPRSguide

Algorithm 4: Branch and Bound

Input: t, jobsListA, jobsListB, dispMach;
Output: void;
boolean goFurther ← true
if t < cI then

goFurther ← false
end
else

if jobsListA == ∅ and jobsListB 6= ∅ and t > cI then
cI ← t
goFurther ← true

end

end
if jobsListA and jobsListB are empty then

if Cmax > dispmax then
Cmax ← dispmax

end

end
if goFurther == true and LB(jobsListA, jobsListB, dispMach) < Cmax then

jobsListA← jobsListA ∪ job(s) j //job(s) j ∈ jobsListB st. rj ≤ t// ;
jobsListB ← jobsListB - job(s) j //job(s) j ∈ jobsListB st. rj ≤ t// ;
//Left branching// ;
if t < rn then

BB(rjobList1 , jobsListA, jobsListB, dispmach);
end
//Right branching in case there are machines for which idle times are smaller than the last job release date// ;
if t < rn then

Procedure1(jobsListA, jobsListB, dispMach);
end
else

//Right branching in case no machine idle time is smaller than the last job release date// ;
Procedure2(jobsListA, jobsListB, dispMach);

end

end

19

October 9, 2016 International Journal of Production Research tPRSguide

Algorithm 5: Moving interval heuristic

Input: L1list of jobs sorted in increasing order of rj , list of machines
Output: Cmax

initialization
Copy L1 into Ltemp

Set Cmax ←∞
forall the k from 1 to n do

while L1 6= ∅ do
if number of jobs in L1 < k then

l← number of jobs in L1

end
else

l← k
end
Set the length of the time window t← max(rl, first machine idle time)
Apply LPTbatch rule to all the jobs j such that rj ≤ t to create a single batch
Erase from L1 the batched jobs
Set rmax ← greatest job release date in the batch
Set t′ ← max(t, rmax)
Execute the batch on the first idle machine at instant t′

end
Cmax ← min(Cmax, latest machine idle time)
L1 ← Ltemp

end

The time complexity of the heuristic is O(n3logn) since index k varies from 1 to n and for each
different value of k a while loop is executed at most n times. Finally, the dominant step in the
while loop is the application of LPT rule having a complexity of O(nlogn).

Appendix B. Numerical example

In this section, we give a numerical example and its solution with the branch and bound algorithm.
The instance contains two identical machines idle at instant 0 and three jobs with r1 = 0, r2 = 10,
r3 = 15, p1 = p2 = 10 and p3 = 20. Machine capacity is equal to two jobs.

B.0.1 Solution steps for the numerical example

The exploration of the search tree is presented in Figure B1. The dotted branches are normally
not created in the tree due to lower bound cuts. However, for demonstration purposes we give the
whole tree as if no lower bound cuts are applied.

Nodes n1, n2, n3: The value of the lower bound is equal to 35 at each of these nodes (cf. LB1).
Thus non of these nodes are pruned. Besides, the algorithm applies depth first search to explore the
tree. Thus, jobs are initially delayed until the last job is released. This way, jobsListB is emptied
and the LPT rule is applied to create batches. More precisely, at node n3 LPTbatch is applied and
a single batch is created with jobs 3 and 2. Since both machines are idle at instant 0, the batch is
assigned to machine 2.

Nodes n4, n5, n6: A single batch containing job 1 is created with LPTbatch. Since machine 1 is
idle at instant 0 and machine 2 is idle at instant 35, batchn4 is assigned to both machines. Node
n4 gives the best makespan value.

Backtracking at node n2 and right branching: A single right branch is created since both

20

October 9, 2016 International Journal of Production Research tPRSguide

n 1

n 2

n 3

n 4

n 5
n 6

n 7

n 8

n 9
n 1

0

n 1
1

n 1
2

n 1
3

n 1
4

n 1
6

n 1
5

ba
tc

h n
3=

 {j
ob

s
3,

2}
O

n
m

ac
hi

ne
2

ba
tc

h n
4=

{jo
bs

 1
}

O
n

m
ac

hi
ne

1
ba

tc
h n

4=
{jo

bs
 1

}
O

n
m

ac
hi

ne
2

C
m

ax
* =

 3
5

C
m

ax
=

45

ba
tc

h n
2=

 {j
ob

s
1,

2}
O

n
m

ac
hi

ne
2

ba
tc

h n
8=

 {j
ob

 3
}

O
n

m
ac

hi
ne

1

ba
tc

h n
8=

 {j
ob

 3
}

O
n

m
ac

hi
ne

2

ba
tc

h n
1=

 {j
ob

 1
}

O
n

m
ac

hi
ne

2

ba
tc

h n
12

=
{jo

b
2}

O
n

m
ac

hi
ne

2

ba
tc

h n
13

=
{jo

bs
 3

, 2
}

O
n

m
ac

hi
ne

2

ba
tc

h n
13

=
{jo

bs
 3

}
O

n
m

ac
hi

ne
1

ba
tc

h n
13

=
{jo

bs
 3

}
O

n
m

ac
hi

ne
2

n 1
7

n 1
8

Jo
b

1

Jo
bs

 2
, 3

M
ac

hi
ne

10

15

35

 T

im
e

2 1

Figure B1. Execution of the branch and bound on the numerical example and the Gantt chart of the optimal solution

machines are idle at 0. The branch stands for the processing of the batch containing jobs 1 and 2.
Node n7: jobsListB contains job 3 and machine 1 is idle at 0. Thus a left branch is generated.
Nodes n8, n9, n10: Since machine 1 is idle 0 and machine 2 is idle at 20, batch containing job

3 is assigned to both of them generating nodes n9 and n10.

21

October 9, 2016 International Journal of Production Research tPRSguide

Backtracking at node n1 and right branching: Job 1 is released at instant 0 where both
machines are also idle. A batch containing job 1 is assigned to machine 2.

Nodes n11, n12, n13:At node n11, jobsListB contains jobs 2 and 3, machine 1 is idle at 0 and
machine 2 is idle at 10. Thus job 2 is delayed with depth first search until the release of job 3, i.e.,
node n13.

Node n13: Job 3 is released at instant 15 and both machines are idle at that instant. A single
batch containing jobs 2 and 3 is created and assigned to machine 2.

Backtracking at node n12 and right branching: Job 1 is released at instant 10 and both
machines are idle at the same instant. A single batch containing job 2 is created and assigned to
machine 2.

Node n15: There is only job 3 left in jobsListB and machine 1 is idle at 10 which is grater than
the release date of job 3. Thus a left branch is generated.

Node n16: Job 3 is released at instant 15, machine 1 is idle at 10 and machine 2 is idle at
20. Thus the batch containing job 3 is assigned to first machine 1 reaching node n17 and then to
machine 2 reaching node n18.

While the optimal solution is found multiple times in different nodes, node n5 is the first node
that gives the optimal Cmax. Besides, all other nodes have a lower bound value greater or equal to
35. Thus, when lower bound cuts are included in the algorithm, the dotted lines would not have
been explored which decreases substantially the size of the tree.

Role of the critical instant procedure
Job 1 can be processed before the release of job 2. Hence the critical is instant is determined as

10 meaning that jobs 2 and 3 can be treated separately than job 1. Thus, when the cI procedure
is included in the solution procedure for the numerical example, the root node becomes n2 and
only nodes n2, n3, n4 and n5 are explored.

Role of the heuristic procedure
The initialization heuristic finds the makespan value as 35 (job 1 processed at instant 0 on

machine 1, job 2 processed at instant 10 on machine 1 and job 3 processed at instant 15 on
machine 2). If the heuristic procedure is included in the solution process of the numerical example,
non of the branches nor nodes are generated since the lower value is not smaller than the makespan
value given by the heuristic.

22

